Gelfand-Mazur theorem
Encyclopedia
In operator theory
Operator theory
In mathematics, operator theory is the branch of functional analysis that focuses on bounded linear operators, but which includes closed operators and nonlinear operators.Operator theory also includes the study of algebras of operators....

, the Gelfand–Mazur theorem is a theorem
Theorem
In mathematics, a theorem is a statement that has been proven on the basis of previously established statements, such as other theorems, and previously accepted statements, such as axioms...

 named after Israel Gelfand
Israel Gelfand
Israel Moiseevich Gelfand, also written Israïl Moyseyovich Gel'fand, or Izrail M. Gelfand was a Soviet mathematician who made major contributions to many branches of mathematics, including group theory, representation theory and functional analysis...

 and Stanisław Mazur which states:
A complex Banach algebra
Banach algebra
In mathematics, especially functional analysis, a Banach algebra, named after Stefan Banach, is an associative algebra A over the real or complex numbers which at the same time is also a Banach space...

, with unit 1, in which every nonzero element is invertible, is isometrically
Isometry
In mathematics, an isometry is a distance-preserving map between metric spaces. Geometric figures which can be related by an isometry are called congruent.Isometries are often used in constructions where one space is embedded in another space...

 isomorphic to the complex number
Complex number
A complex number is a number consisting of a real part and an imaginary part. Complex numbers extend the idea of the one-dimensional number line to the two-dimensional complex plane by using the number line for the real part and adding a vertical axis to plot the imaginary part...

s.


In other words, the only complex Banach algebra that is a division algebra
Division algebra
In the field of mathematics called abstract algebra, a division algebra is, roughly speaking, an algebra over a field, in which division is possible.- Definitions :...

 is the complex numbers C. This follows from the fact that, if A is a complex Banach algebra, the spectrum
Spectrum (functional analysis)
In functional analysis, the concept of the spectrum of a bounded operator is a generalisation of the concept of eigenvalues for matrices. Specifically, a complex number λ is said to be in the spectrum of a bounded linear operator T if λI − T is not invertible, where I is the...

 of an element aA is nonempty (which in turn is a consequence of the complex-analycity of the resolvent function). For every a ∈ A, there is some complex number λ such that λ1 − a is not invertible. By assumption, λ1 − a = 0. So a = λ · 1. This gives an isomorphism from A to C.

Actually, a stronger and harder theorem was proved first by Stanislaw Mazur alone, but it was published in France without a proof, when the author refused the editor's request to shorten his already short proof. Mazur's theorem states that there are (up to isomorphism) exactly three real Banach division algebras: the fields of reals R, of complex numbers C, and the division algebra of quaternions H. Gelfand proved (independently) the easier, special, complex version a few years later, after Mazur. However, it was Gelfand's work which influenced the further progress in the area. Gelfand has created a whole theory.
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK