Craig's theorem
Encyclopedia
In mathematical logic
Mathematical logic
Mathematical logic is a subfield of mathematics with close connections to foundations of mathematics, theoretical computer science and philosophical logic. The field includes both the mathematical study of logic and the applications of formal logic to other areas of mathematics...

, Craig's theorem states that any recursively enumerable set
Recursively enumerable set
In computability theory, traditionally called recursion theory, a set S of natural numbers is called recursively enumerable, computably enumerable, semidecidable, provable or Turing-recognizable if:...

 of well-formed formula
Well-formed formula
In mathematical logic, a well-formed formula, shortly wff, often simply formula, is a word which is part of a formal language...

s of a first-order language is (primitively) recursively axiomatizable. This result is not related to the well-known Craig interpolation
Craig interpolation
In mathematical logic, Craig's interpolation theorem is a result about the relationship between different logical theories. Roughly stated, the theorem says that if a formula φ implies a formula ψ then there is a third formula ρ, called an interpolant, such that every nonlogical symbol...

 theorem.

Recursive axiomatization

Let be an enumeration of the axioms of a recursively enumerable set T of first-order formulas. Construct another set T* consisting of


for each positive integer i. The deductive closures of T* and T are thus equivalent; the proof will show that T* is a decidable set. A decision procedure for T* lends itself according to the following informal reasoning. Each member of T* is either or of the form


Since each formula has finite length, it is checkable whether or not it is or of the said form. If it is of the said form and consists of j conjuncts, it is in T* if it is the expression ; otherwise it is not in T*. Again, it is checkable whether it is in fact by going through the enumeration of the axioms of T and then checking symbol-for-symbol whether the expressions are identical.

Primitive recursive axiomatizations

The proof above shows that for each recursively enumerable set of axioms there is a recursive set of axioms with the same deductive closure. A set of axioms is primitive recursive if there is a primitive recursive function that decides membership in the set. To obtain a primitive recursive aximatization, instead of replacing a formula with


one instead replaces it with
(*)

where f(x) is a function that, given i, returns a computation history showing that is in the original recursively enumerable set of axioms. It is possible for a primitive recursive function to parse an expression of form (*) to obtain and j. Then, because Kleene's T predicate
Kleene's T predicate
In computability theory, the T predicate, first studied by mathematician Stephen Cole Kleene, is a particular set of triples of natural numbers that is used to represent computable functions within formal theories of arithmetic...

is primitive recursive, it is possible for a primitive recursive function to verify that j is indeed a computation history as required.
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK