Absolutely irreducible
Encyclopedia
In mathematics
, absolutely irreducible is a term applied to linear representations or algebraic varieties
over a field. It means that the object in question remains irreducible, even after any finite extension of the field of coefficients. In both cases, being absolutely irreducible is the same as being irreducible over the algebraic closure
of the ground field.
Mathematics
Mathematics is the study of quantity, space, structure, and change. Mathematicians seek out patterns and formulate new conjectures. Mathematicians resolve the truth or falsity of conjectures by mathematical proofs, which are arguments sufficient to convince other mathematicians of their validity...
, absolutely irreducible is a term applied to linear representations or algebraic varieties
Algebraic variety
In mathematics, an algebraic variety is the set of solutions of a system of polynomial equations. Algebraic varieties are one of the central objects of study in algebraic geometry...
over a field. It means that the object in question remains irreducible, even after any finite extension of the field of coefficients. In both cases, being absolutely irreducible is the same as being irreducible over the algebraic closure
Algebraic closure
In mathematics, particularly abstract algebra, an algebraic closure of a field K is an algebraic extension of K that is algebraically closed. It is one of many closures in mathematics....
of the ground field.
Examples
- The irreducible two-dimensional representation of the symmetric groupSymmetric groupIn mathematics, the symmetric group Sn on a finite set of n symbols is the group whose elements are all the permutations of the n symbols, and whose group operation is the composition of such permutations, which are treated as bijective functions from the set of symbols to itself...
S3 of order 6, originally defined over the field of rational numberRational numberIn mathematics, a rational number is any number that can be expressed as the quotient or fraction a/b of two integers, with the denominator b not equal to zero. Since b may be equal to 1, every integer is a rational number...
s, is absolutely irreducible.
- The representation of the circle group by rotations in the plane is irreducible (over the field of real numbers), but is not absolutely irreducible. After extending the field to complex numbers, it splits into two irreducible components. This is to be expected, since the circle group is commutative and it is known that all irreducible representations of commutative groups over an algebraically closed field are one-dimensional.
- The real algebraic variety defined by the equation
- is absolutely irreducible. It is the ordinary circleCircleA circle is a simple shape of Euclidean geometry consisting of those points in a plane that are a given distance from a given point, the centre. The distance between any of the points and the centre is called the radius....
over the reals and remains an irreducible conic sectionConic sectionIn mathematics, a conic section is a curve obtained by intersecting a cone with a plane. In analytic geometry, a conic may be defined as a plane algebraic curve of degree 2...
over the field of complex numbers. Absolute irreducibility more generally holds over any field not of characteristic two. In characteristic two, the equation is equivalent to (x + y −1)2 = 0. Hence it defines the double line x + y =1, which is a non-reducedReduced ringIn ring theory, a ring R is called a reduced ring if it has no non-zero nilpotent elements. Equivalently, a ring is reduced if it has no non-zero elements with square zero, that is, x2 = 0 implies x = 0...
scheme.
- The algebraic variety given by the equation
- is not absolutely irreducible. Indeed, the left hand side can be factored as
-
- where is a square root of −1.
- Therefore, this algebraic variety consists of two lines intersecting at the origin and is not absolutely irreducible. This holds either already over the ground field, if −1 is a square, or over the quadratic extension obtained by adjoining i.