Aircraft 150
Encyclopedia
The OKB-1 '150' was a jet bomber designed and produced in the USSR from .
many German
engineers were 'seconded' by the Soviet government to continue their advanced research under direct supervision of the USSR. One of the most significant German teams was OKB-1 (opytno-konstrooktorskoye byuro – experimental design bureau) set up in GOZ-1 (Gosoodarstvenny opytnyy zavod – state experimental plant) at Dobna near Moscow
. OKB-1, with Dr. Brunholf Baade as chief designer, continued work on German built aircraft such as the EF-131 and '140', which used many components of the two EF-131's, as well as design work on the still-born EF-132 long range bomber. By early 1948 Semyon M. Alekseyev had been appointed as supervisor/chief warden/supervisor of OKB-1, with Dr. Brunholf Baade remaining as chief designer. This has caused confusion in the past with '150' being ascribed to Alekseyev and not OKB-1 (OKB-1 was not named after Baade for propaganda reasons).
In 1948 OKB-1 started design work on a new jet bomber, designated RB-2 (Reaktiivnyy Bombardirovshchik – jet bomber), to a specification drawn up by ADD (Aviahtsiya Dahl'nevo Deystviya - long range aviation). This design evolved until the use of a new designation seemed prudent and thus '150' was born. (Note:- many aviation writers use Samolyet/aircraft or Izdeliye/product descriptors when the aircraft was simply called '150', the same applies to '140' and its variants.). The '150' was originally to be powered by two Lyul'ka TR-3 turbojet engines, but on the 20th May OKB-1 was ordered to use Mikulin
AMRD-04 engines, this decision was eventually overturned and the smaller, lighter and less powerful Lyul'ka TR-3A was finally selected.
The '150' was constructed throughout with light alloy stressed skin and high strength steel for highly stressed parts. The fuselage was of oval section fore and aft with a cylindrical section in the middle. The 35o shoulder mounted swept wings had 1 o 20' anhedral on the lower surface, outboard of rib 4. The outrigger undercarriages were mounted in large pods at the wing-tips which also served as end-plates and anti-flutter balance weights. The upper surface of the wings had two wing fences each side. The 45o swept fin and 40o swept tailplane were constructed in similar fashion to the wings, the tailplane attached to the extremity of the fin with 8 deg of dihedral to improve longitudinal stability, and a large carrot like fairing at the fin/tailplane junction.
The main and nose undercarriages retracted aft into the fuselage, with the main undercarriage able to kneel for take-off making take-off possible on shorter runways. The twin wheeled nose and main gears had levered suspension and different tracks to improve rough-field performance. The kneeling undercarriage was initiated at the start of the take-off run and gradually bled oil out of the Oleo-pneumatic strut until the required incidence of 3 degrees was reached just before lift-off. After take-off the undercarriage was selected to retract which reversed the oil flow as the undercarriage retracted. All undercarriages were enclosed with fairings and doors when retracted. The bi-cycle undercarriage arrangement was tested on the Alekseyev I-215D.
The seven stage axial compressor Lyul'ka TR-3A (later AL-5) turbojet engines, with variable exhaust nozzles and petrol engine starters, were housed in the streamlined nacelles attached to pylons at 26% span. To boost take-off performance four '126-1' JATO
rockets of 2,000 kg (4,410 lb)for 17s could be attached to the rear fuselage ('129-1' JATO bottles were used on the prototype).
The control system of the '150' was revolutionary for its time, with irreversible, electrically signalled and electrically driven screw-jacks operating the control surfaces. This was one of the very first "fly by wire
" aircraft as well as one of the very first all powered flying control aircraft, albeit without the benefit of modern computers. Doubts about the control system were allayed at an early stage by extensive testing and demonstrations with an 'iron bird' test rig which duplicated the system installed in the aircraft, and a captured Ju 388L
, designated '145', which was modified with the electrical control system. The electrical power source for the flying controls also raised doubts about the ability of the electrical system to cope, especially with an engine failure. To provide electrical power in the event of generator or engine failure a drop-down RAT(ram air turbine
), driven by ram air in the aircraft slipstream provided a back-up system.
The defensive armament was carried in remotely controlled dorsal and tail barbettes, with the dorsal gunner sitting at the rear of the large cockpit facing rearwards and the tail gunner in the tail operating the tail barbette. The pilot controlled a single forward firing fixed cannon in the starboard forward fuselage.
Up to 6,000 kg (13,320 lb) of bombs were to be carried internally in the fuselage bomb bay between the nose and main undercarriages.
The forward fuselage pressure cabin housed the pilot, co-pilot/radio-operator and dorsal gunner were accommodated under a large greenhouse style canopy, the navigator in the extreme nose, and the tail-gunner in his own pressure cabin sitting on a downward firing ejection seat. The forward compartment crew members were intended to have ejection seats but photographic evidence in the reference given does not show this.
'150' was provided with the latest radios, RADAR
's and navigation aids, with a ground mapping bomb-sight RADAR in a chin fairing under the nose, which also housed the taxi and landing lamps.
Despite the high priority given to the actual aircraft, progress was slow during the design and construction phases due, in no small part, to the low priority given to the foreign OKB for resources. Baade was in constant contact with the 'powers that be' defending the slow progress but falling short of blaming the paranoid administration system. As well as the bureaucratic set backs, the aircraft had a steady stream of system and structural failures which needed to be addressed before the aircraft could fly. On top of the problems already mentioned the OKB were forced to stop work completely in June and July of 1949 while the conversion of the '140
' into the '140-R' was given the highest priority, (in hindsight this was a complete waste of resources).
Flight trials finally began in September 1952. but progressed slowly due to the weather and rectifying the defects discovered during the trials. The seventeenth flight on the 9th of May 1953 proved to be the last, when the pilot Yakov I. Vernikov misjudged the flare on landing, the aircraft ballooned and stalled into the runway from approx 10m. Extensive but repairable damage was caused, but the '150' was never repaired, with test rigs, airframe components, and other parts dispersed to other OKB's. OKB-1 was disbanded and the German engineers were repatriated to the GDR.
Development
At the end of World War IIWorld War II
World War II, or the Second World War , was a global conflict lasting from 1939 to 1945, involving most of the world's nations—including all of the great powers—eventually forming two opposing military alliances: the Allies and the Axis...
many German
Germans
The Germans are a Germanic ethnic group native to Central Europe. The English term Germans has referred to the German-speaking population of the Holy Roman Empire since the Late Middle Ages....
engineers were 'seconded' by the Soviet government to continue their advanced research under direct supervision of the USSR. One of the most significant German teams was OKB-1 (opytno-konstrooktorskoye byuro – experimental design bureau) set up in GOZ-1 (Gosoodarstvenny opytnyy zavod – state experimental plant) at Dobna near Moscow
Moscow
Moscow is the capital, the most populous city, and the most populous federal subject of Russia. The city is a major political, economic, cultural, scientific, religious, financial, educational, and transportation centre of Russia and the continent...
. OKB-1, with Dr. Brunholf Baade as chief designer, continued work on German built aircraft such as the EF-131 and '140', which used many components of the two EF-131's, as well as design work on the still-born EF-132 long range bomber. By early 1948 Semyon M. Alekseyev had been appointed as supervisor/chief warden/supervisor of OKB-1, with Dr. Brunholf Baade remaining as chief designer. This has caused confusion in the past with '150' being ascribed to Alekseyev and not OKB-1 (OKB-1 was not named after Baade for propaganda reasons).
In 1948 OKB-1 started design work on a new jet bomber, designated RB-2 (Reaktiivnyy Bombardirovshchik – jet bomber), to a specification drawn up by ADD (Aviahtsiya Dahl'nevo Deystviya - long range aviation). This design evolved until the use of a new designation seemed prudent and thus '150' was born. (Note:- many aviation writers use Samolyet/aircraft or Izdeliye/product descriptors when the aircraft was simply called '150', the same applies to '140' and its variants.). The '150' was originally to be powered by two Lyul'ka TR-3 turbojet engines, but on the 20th May OKB-1 was ordered to use Mikulin
Mikulin
Alexander Alexandrovich Mikulin was a Soviet aircraft engine designer and chief designer in the Mikulin OKB. His achievements include the first Soviet liquid-cooled piston aircraft engine Mikulin AM-34 and the Mikulin AM-3 turbojet engine for Soviet Union's first jet airliner Tupolev Tu-104...
AMRD-04 engines, this decision was eventually overturned and the smaller, lighter and less powerful Lyul'ka TR-3A was finally selected.
The '150' was constructed throughout with light alloy stressed skin and high strength steel for highly stressed parts. The fuselage was of oval section fore and aft with a cylindrical section in the middle. The 35o shoulder mounted swept wings had 1 o 20' anhedral on the lower surface, outboard of rib 4. The outrigger undercarriages were mounted in large pods at the wing-tips which also served as end-plates and anti-flutter balance weights. The upper surface of the wings had two wing fences each side. The 45o swept fin and 40o swept tailplane were constructed in similar fashion to the wings, the tailplane attached to the extremity of the fin with 8 deg of dihedral to improve longitudinal stability, and a large carrot like fairing at the fin/tailplane junction.
The main and nose undercarriages retracted aft into the fuselage, with the main undercarriage able to kneel for take-off making take-off possible on shorter runways. The twin wheeled nose and main gears had levered suspension and different tracks to improve rough-field performance. The kneeling undercarriage was initiated at the start of the take-off run and gradually bled oil out of the Oleo-pneumatic strut until the required incidence of 3 degrees was reached just before lift-off. After take-off the undercarriage was selected to retract which reversed the oil flow as the undercarriage retracted. All undercarriages were enclosed with fairings and doors when retracted. The bi-cycle undercarriage arrangement was tested on the Alekseyev I-215D.
The seven stage axial compressor Lyul'ka TR-3A (later AL-5) turbojet engines, with variable exhaust nozzles and petrol engine starters, were housed in the streamlined nacelles attached to pylons at 26% span. To boost take-off performance four '126-1' JATO
JATO
JATO is an acronym for jet-fuel assisted take off. It is a system for helping overloaded aircraft into the air by providing additional thrust in the form of small rockets....
rockets of 2,000 kg (4,410 lb)for 17s could be attached to the rear fuselage ('129-1' JATO bottles were used on the prototype).
The control system of the '150' was revolutionary for its time, with irreversible, electrically signalled and electrically driven screw-jacks operating the control surfaces. This was one of the very first "fly by wire
Fly by Wire
Fly by Wire: The Geese, the Glide, the Miracle on the Hudson is a book written in 2009 by William Langewiesche about US Airways Flight 1549 with emphasis on the role played by the advanced fly-by-wire flight control system of the aircraft....
" aircraft as well as one of the very first all powered flying control aircraft, albeit without the benefit of modern computers. Doubts about the control system were allayed at an early stage by extensive testing and demonstrations with an 'iron bird' test rig which duplicated the system installed in the aircraft, and a captured Ju 388L
Junkers Ju 388
The Junkers Ju 388 Störtebeker was a World War II German Luftwaffe multi-role aircraft based on the Ju 88 airframe by way of the Ju 188. It differed from its predecessors in being intended for high altitude operation, with design features such as a pressurized cockpit for its crew...
, designated '145', which was modified with the electrical control system. The electrical power source for the flying controls also raised doubts about the ability of the electrical system to cope, especially with an engine failure. To provide electrical power in the event of generator or engine failure a drop-down RAT(ram air turbine
Ram air turbine
A ram air turbine is a small turbine that is connected to a hydraulic pump, or electrical generator, installed in an aircraft and used as a power source...
), driven by ram air in the aircraft slipstream provided a back-up system.
The defensive armament was carried in remotely controlled dorsal and tail barbettes, with the dorsal gunner sitting at the rear of the large cockpit facing rearwards and the tail gunner in the tail operating the tail barbette. The pilot controlled a single forward firing fixed cannon in the starboard forward fuselage.
Up to 6,000 kg (13,320 lb) of bombs were to be carried internally in the fuselage bomb bay between the nose and main undercarriages.
The forward fuselage pressure cabin housed the pilot, co-pilot/radio-operator and dorsal gunner were accommodated under a large greenhouse style canopy, the navigator in the extreme nose, and the tail-gunner in his own pressure cabin sitting on a downward firing ejection seat. The forward compartment crew members were intended to have ejection seats but photographic evidence in the reference given does not show this.
'150' was provided with the latest radios, RADAR
Radar
Radar is an object-detection system which uses radio waves to determine the range, altitude, direction, or speed of objects. It can be used to detect aircraft, ships, spacecraft, guided missiles, motor vehicles, weather formations, and terrain. The radar dish or antenna transmits pulses of radio...
's and navigation aids, with a ground mapping bomb-sight RADAR in a chin fairing under the nose, which also housed the taxi and landing lamps.
Despite the high priority given to the actual aircraft, progress was slow during the design and construction phases due, in no small part, to the low priority given to the foreign OKB for resources. Baade was in constant contact with the 'powers that be' defending the slow progress but falling short of blaming the paranoid administration system. As well as the bureaucratic set backs, the aircraft had a steady stream of system and structural failures which needed to be addressed before the aircraft could fly. On top of the problems already mentioned the OKB were forced to stop work completely in June and July of 1949 while the conversion of the '140
140
Year 140 was a leap year starting on Thursday of the Julian calendar. At the time, it was known as the Year of the Consulship of Hadrianus and Caesar...
' into the '140-R' was given the highest priority, (in hindsight this was a complete waste of resources).
Flight trials finally began in September 1952. but progressed slowly due to the weather and rectifying the defects discovered during the trials. The seventeenth flight on the 9th of May 1953 proved to be the last, when the pilot Yakov I. Vernikov misjudged the flare on landing, the aircraft ballooned and stalled into the runway from approx 10m. Extensive but repairable damage was caused, but the '150' was never repaired, with test rigs, airframe components, and other parts dispersed to other OKB's. OKB-1 was disbanded and the German engineers were repatriated to the GDR.
Variants
- '150' – The initial version of the aircraft, flown as the '150'
- '150-R' – A tactical photo reconnaissance aircraft variant designed early in , a mock-up was built but full-scale development not carried out.
- '152' - The Baade 152 (a.k.a. VEB type 152) airliner designed and manufactured in the DDR by VEBVEBVEB may stand for:*Virtual/Electronic Business*Venezuelan Bolívar, the currency of Venezuela between 1879 and 2007. *Volkseigener Betrieb , a state owned workplace or establishment in the German Democratic Republic.*VEB Maschinenpistole, an East German machine pistol.*Vnesh Econom Bank, the...
after the OKB-1 team were repatriated.