Array of Low Energy X-ray Imaging Sensors
Encyclopedia
The Array of Low Energy X-ray Imaging Sensors (ALEXIS) X-ray
X-ray astronomy
X-ray astronomy is an observational branch of astronomy which deals with the study of X-ray observation and detection from astronomical objects. X-radiation is absorbed by the Earth's atmosphere, so instruments to detect X-rays must be taken to high altitude by balloons, sounding rockets, and...

 telescope
Telescope
A telescope is an instrument that aids in the observation of remote objects by collecting electromagnetic radiation . The first known practical telescopes were invented in the Netherlands at the beginning of the 1600s , using glass lenses...

s feature curved mirrors whose multilayer coatings reflect and focus low-energy X-ray
X-ray
X-radiation is a form of electromagnetic radiation. X-rays have a wavelength in the range of 0.01 to 10 nanometers, corresponding to frequencies in the range 30 petahertz to 30 exahertz and energies in the range 120 eV to 120 keV. They are shorter in wavelength than UV rays and longer than gamma...

s or extreme ultraviolet
Ultraviolet
Ultraviolet light is electromagnetic radiation with a wavelength shorter than that of visible light, but longer than X-rays, in the range 10 nm to 400 nm, and energies from 3 eV to 124 eV...

 light the way optical telescope
Optical telescope
An optical telescope is a telescope which is used to gather and focus light mainly from the visible part of the electromagnetic spectrum for directly viewing a magnified image for making a photograph, or collecting data through electronic image sensors....

s focus visible light. The satellite and payloads were funded by the United States Department of Energy
United States Department of Energy
The United States Department of Energy is a Cabinet-level department of the United States government concerned with the United States' policies regarding energy and safety in handling nuclear material...

 and built by Los Alamos National Laboratory
Los Alamos National Laboratory
Los Alamos National Laboratory is a United States Department of Energy national laboratory, managed and operated by Los Alamos National Security , located in Los Alamos, New Mexico...

 in collaboration with Sandia National Laboratories
Sandia National Laboratories
The Sandia National Laboratories, managed and operated by the Sandia Corporation , are two major United States Department of Energy research and development national laboratories....

 and the University of California
University of California
The University of California is a public university system in the U.S. state of California. Under the California Master Plan for Higher Education, the University of California is a part of the state's three-tier public higher education system, which also includes the California State University...

-Space Sciences Lab. The satellite bus was built by AeroAstro, Inc. of Herndon, VA. The Launch was provided by the United States Air Force
United States Air Force
The United States Air Force is the aerial warfare service branch of the United States Armed Forces and one of the American uniformed services. Initially part of the United States Army, the USAF was formed as a separate branch of the military on September 18, 1947 under the National Security Act of...

 Space Test Program on a Pegasus
Pegasus rocket
The Pegasus rocket is a winged space launch vehicle capable of carrying small, unmanned payloads into low Earth orbit. It is air-launched, as part of an expendable launch system developed by Orbital Sciences Corporation . Three main stages burning solid propellant provide the thrust...

Booster on April 25, 1993. The mission is entirely controlled from a small groundstation at LANL.

Features

ALEXIS scans half the sky with its three paired sets of EUV telescopes, although it cannot locate any events with high resolution. Ground-based optical astronomers can look for visual counterparts to the EUV transients seen by ALEXIS by comparing observations made at two different times. Large telescopes, with their small fields of view, cannot quickly scan a large enough piece of the sky to effectively observe transients seen by ALEXIS, but amateur equipment is well suited to the task. All participants in the ALEXIS project, may comb the ALEXIS data for the coordinates of a likely current transient, then train their telescopes and observe the area.

There are six EUV telescopes which are arranged in three co-aligned pairs which cover three overlapping 33° fields-of-view. At each rotation of the satellite, ALEXIS is to monitor the entire anti-solar hemisphere. Each telescope consists of a spherical mirror with a Mo-Si layered synthetic microstructure (LSM) or Multilayer coating, a curved profile microchannel plate detector located at the telescope's prime focus, a UV background-rejecting filter, electron rejecting magnets at the telescope aperture, and image processing readout electronics. The geometric collecting area of each telescope is about 25 cm2, with spherical aberration limiting resolution to about 0.25°s. Analysis of the pre-flight x-ray throughput calibration data indicates that the peak on-axis effective collecting area for each telescope's response function ranges from 0.25 to 0.05 cm2. The peak area-solid angle product response function of each telescope ranges from 0.04 to 0.015 cm2-sr.

The spacing of the molybdenum and silicon layers on each telescope's mirror is the primary determinant of the telescope's photon energy response function. The ALEXIS multilayer mirrors also employ a "wavetrap" feature to significantly reduce the mirror's reflectance for He II 304 Angstrom geocoronal radiation which can be a significant background source for space borne EUV telescopes. These mirrors, produced by Ovonyx, Inc., are highly curved yet have been shown to have very uniform multilayer coatings and hence have very uniform EUV reflecting properties over their entire surfaces. The efforts in designing, producing and calibrating the ALEXIS telescope mirrors have been previously described in Smith et al., 1990.

ALEXIS weighs 100 pounds, uses 45 watts, and produces 10 kilobits/second of data. Position and time of arrival are recorded for each detected photon. ALEXIS will always be in a survey-monitor mode, with no individual source pointings. It is suited for simultaneous observations with ground-based observers who prefer to observe sources at opposition. Coordinated observations need not be arranged before the fact, because most sources in the anti-Sun hemisphere will be observed and archived. ALEXIS is tracked from a single ground station in Los Alamos. Between ground station passes, data are stored in an on-board solid state memory of 78 Megabytes. ALEXIS, with its wide fields-of-view and well-defined wavelength bands, complements the scanners on NASA's Extreme Ultraviolet Explorer (EUVE) and the ROSAT EUV Wide Field Camera (WFC), which are sensitive, narrow field-of-view, broad-band survey experiments. ALEXIS's results will also highly complement the data from EUVE's spectroscopy instrument.

ALEXIS's scientific goals are to:
  • Map the diffuse background in three emission line bands with the highest angular resolution to date,
  • Perform a narrow-band survey of point sources,
  • Search for transient phenomena in the ultrasoft X-ray band, and
  • Provide synoptic monitoring of variable ultrasoft X-ray sources such as cataclysmic variables and flare stars.

Current status

After 13 years in orbit, the ALEXIS satellite reached the end of its career. Its solar arrays have degraded in charge producing ability, and 2 out of the 4 battery packs have failed. One remaining battery is barely working. As of the 29 April 2005, the final 2 satellite contacts in which its solar arrays will be intentionally tipped the sun, placing the Alexis system in the lowest power state for safety purposes after which it will stop being tracked.

External links

The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK