Biomineralisation
Encyclopedia
Biomineralization is the process by which living organisms produce mineral
Mineral
A mineral is a naturally occurring solid chemical substance formed through biogeochemical processes, having characteristic chemical composition, highly ordered atomic structure, and specific physical properties. By comparison, a rock is an aggregate of minerals and/or mineraloids and does not...

s, often to harden or stiffen existing tissues. Such tissues are called mineralized tissues
Mineralized tissues
Mineralized tissues are biological tissues that incorporate minerals into soft matrices. Typically these tissues form a protective shield or structural support...

. It is an extremely widespread phenomenon; all six taxonomic kingdoms contain members that are able to form minerals, and over 60 different minerals have been identified in organisms. Examples include silicates in algae
Algae
Algae are a large and diverse group of simple, typically autotrophic organisms, ranging from unicellular to multicellular forms, such as the giant kelps that grow to 65 meters in length. They are photosynthetic like plants, and "simple" because their tissues are not organized into the many...

 and diatoms, carbonate
Carbonate
In chemistry, a carbonate is a salt of carbonic acid, characterized by the presence of the carbonate ion, . The name may also mean an ester of carbonic acid, an organic compound containing the carbonate group C2....

s in invertebrates, and calcium phosphates and carbonates
Calcium carbonate
Calcium carbonate is a chemical compound with the formula CaCO3. It is a common substance found in rocks in all parts of the world, and is the main component of shells of marine organisms, snails, coal balls, pearls, and eggshells. Calcium carbonate is the active ingredient in agricultural lime,...

 in vertebrates. These minerals often form structural features such as sea shells and the bone
Bone
Bones are rigid organs that constitute part of the endoskeleton of vertebrates. They support, and protect the various organs of the body, produce red and white blood cells and store minerals. Bone tissue is a type of dense connective tissue...

 in mammals and birds. Organism
Organism
In biology, an organism is any contiguous living system . In at least some form, all organisms are capable of response to stimuli, reproduction, growth and development, and maintenance of homoeostasis as a stable whole.An organism may either be unicellular or, as in the case of humans, comprise...

s have been producing mineralised skeleton
Skeleton
The skeleton is the body part that forms the supporting structure of an organism. There are two different skeletal types: the exoskeleton, which is the stable outer shell of an organism, and the endoskeleton, which forms the support structure inside the body.In a figurative sense, skeleton can...

s for the past 550 million years. Other examples include copper
Copper
Copper is a chemical element with the symbol Cu and atomic number 29. It is a ductile metal with very high thermal and electrical conductivity. Pure copper is soft and malleable; an exposed surface has a reddish-orange tarnish...

, iron
Iron
Iron is a chemical element with the symbol Fe and atomic number 26. It is a metal in the first transition series. It is the most common element forming the planet Earth as a whole, forming much of Earth's outer and inner core. It is the fourth most common element in the Earth's crust...

 and gold
Gold
Gold is a chemical element with the symbol Au and an atomic number of 79. Gold is a dense, soft, shiny, malleable and ductile metal. Pure gold has a bright yellow color and luster traditionally considered attractive, which it maintains without oxidizing in air or water. Chemically, gold is a...

 deposits involving bacteria. Biologically-formed minerals often have special uses such as magnetic sensors in magnetotactic bacteria
Magnetotactic bacteria
Magnetotactic bacteria are a polyphyletic group of bacteria discovered by Richard P. Blakemore in 1975, that orient along the magnetic field lines of Earth's magnetic field. To perform this task, these bacteria have organelles called magnetosomes that contain magnetic crystals...

 (Fe3O4), gravity sensing devices (CaCO3, CaSO4, BaSO4) and iron storage and mobilization (Fe2O3•H2O in the protein ferritin
Ferritin
Ferritin is a ubiquitous intracellular protein that stores iron and releases it in a controlled fashion. The amount of ferritin stored reflects the amount of iron stored. The protein is produced by almost all living organisms, including bacteria, algae and higher plants, and animals...

).

In terms of taxonomic distribution, the most common biominerals are the phosphate
Phosphate
A phosphate, an inorganic chemical, is a salt of phosphoric acid. In organic chemistry, a phosphate, or organophosphate, is an ester of phosphoric acid. Organic phosphates are important in biochemistry and biogeochemistry or ecology. Inorganic phosphates are mined to obtain phosphorus for use in...

 and carbonate
Carbonate
In chemistry, a carbonate is a salt of carbonic acid, characterized by the presence of the carbonate ion, . The name may also mean an ester of carbonic acid, an organic compound containing the carbonate group C2....

 salts of calcium
Calcium
Calcium is the chemical element with the symbol Ca and atomic number 20. It has an atomic mass of 40.078 amu. Calcium is a soft gray alkaline earth metal, and is the fifth-most-abundant element by mass in the Earth's crust...

 that are used in conjunction with organic polymers such as collagen
Collagen
Collagen is a group of naturally occurring proteins found in animals, especially in the flesh and connective tissues of mammals. It is the main component of connective tissue, and is the most abundant protein in mammals, making up about 25% to 35% of the whole-body protein content...

 and chitin
Chitin
Chitin n is a long-chain polymer of a N-acetylglucosamine, a derivative of glucose, and is found in many places throughout the natural world...

 to give structural support to bones and shells. The structures of these biocomposite materials are highly controlled from the nanometer to the macroscopic level, resulting in complex architectures that provide multifunctional properties. Because this range of control over mineral growth is desirable for materials engineering applications, there is significant interest in understanding and elucidating the mechanisms of biologically controlled biomineralization.

Biological roles

Biominerals perform a variety of roles in organisms, the most important being support, defence and feeding.

Biology

If present on a super-cellular scale, biominerals are usually deposited by a dedicated organ, which is often defined very early in the embryological development. This organ will contain an organic matrix that facilitates and directs the deposition of crystals. The matrix may be collagen, as in deuterostomes, or based on chitin or other polysaccharides, as in molluscs.

Shell formation in molluscs

The mollusc shell is a biogenic composite material that has been the subject of much interest in materials science because of its unusual properties and its model character for biomineralization. Molluscan shells consist of 95–99% calcium carbonate by weight, while an organic component makes up the remaining 1–5%. The resulting composite has a fracture toughness ~3000 times greater than that of the crystals themselves. In the biomineralization of the mollusc shell, specialized proteins are responsible for directing crystal nucleation, phase, morphology, and growths dynamics and ultimately give the shell its remarkable mechanical strength. The application of biomimetic principles elucidated from mollusc shell assembly and structure may help in fabricating new composite materials with enhanced optical, electronic, or structural properties.

Chemistry

Because extracellular iron is strongly involved in inducing calcification, its control is essential in developing shells; the gene ferritin plays an important role in controlling the distribution of iron.

Evolution

The first evidence of biomineralization dates to some , and sponge-grade organisms may have formed calcite skeletons . But in most lineages, biomineralization first occurred in the Cambrian or Ordovician periods. Organisms used whichever form of calcium carbonate was more stable in the water column at the point in time when they became biomineralized, and stuck with that form for the remainder of their biological history (but see for a more detailed analysis). The stability is dependent on the Ca/Mg ratio of seawater, which is thought to be controlled primarily by the rate of sea floor spreading, although atmospheric levels may also play a role.

Biomineralization evolved multiple times, independently – but interestingly, many of the same processes are used in unrelated lineages, which suggests that biomineralization machinery was assembled from pre-existing "off-the-shelf" components already used for other purposes in the organism. Although the biomachinery facilitating biomineralization is complex – involving signalling transmitters, inhibitors, and transcription factors – many elements of this 'toolkit' are shared between phyla as diverse as corals, molluscs, and vertebrates.
The shared components tend to perform quite fundamental tasks, such as designating that cells will be used to create the minerals, whereas genes controlling more finely tuned aspects that occur later in the biomineralization process – such as the precise alignment and structure of the crystals produced – tend to be uniquely evolved in different lineages. This suggests that Precambrian organisms were employing the same elements, albeit for a different purpose — perhaps to avoid the inadvertent precipitation of calcium carbonate from the supersaturated Proterozoic oceans. Forms of mucus that are involved in inducing mineralization in most metazoan lineages appear to have performed such an anticalcifatory function in the ancestral state. Further, certain proteins that would originally have been involved in maintaining calcium concentrations within cells are homologous to all metazoans, and appear to have been co-opted into biomineralization after the divergence of the metazoan lineages. The galaxins are one probable example of a gene being co-opted from a different ancestral purpose into controlling biomineralization, in this case being 'switched' to this purpose in the Triassic scleractinian corals; the role performed appears to be functionally identical to the unrelated pearlin gene in molluscs. Carbonic anhydrase serves a role in mineralization in sponges, as well as metazoans, implying an ancestral role.
Far from being a rare trait that evolved a few times and remained stagnant, biomineralization pathways in fact evolved many times and are still evolving rapidly today; even within a single genus it is possible to detect great variation within a single gene family.

The homology of biomineralization pathways is underlined by a remarkable experiment whereby the nacreous layer of a molluscan shell was implanted into a human tooth, and rather than experiencing an immune response, the molluscan nacre was incorporated into the host bone matrix. This points to the exaptation of an original biomineralization pathway.

The most ancient example of biomineralization, dating back 2 billion years, is the deposition of magnetite, which is observed in some bacteria, as well as the teeth of chiton
Chiton
Chitons are small to large, primitive marine molluscs in the class Polyplacophora.There are 900 to 1,000 extant species of chitons in the class, which was formerly known as Amphineura....

s and the brains of vertebrates; it is possible that this pathway, which performed a magentosensory role in the common ancestor of all bilaterians, was duplicated and modified in the Cambrian to form the basis for calcium-based biomineralization pathways. Iron is stored in close proximity to magnetite-coated chiton teeth, so that the teeth can be renewed as they wear. Not only is there a marked similarity between the magnetite deposition process and enamel deposition in vertebrates but some vertebrates even have comparable iron storage facilities near their teeth.

{|
|- valign="top"
|
{| class="wikitable" style="font-size:95%"
|-
! Type of mineralization !! Examples of organisms
|- align="left"
| Calcium carbonate
Calcium carbonate
Calcium carbonate is a chemical compound with the formula CaCO3. It is a common substance found in rocks in all parts of the world, and is the main component of shells of marine organisms, snails, coal balls, pearls, and eggshells. Calcium carbonate is the active ingredient in agricultural lime,...

(calcite
Calcite
Calcite is a carbonate mineral and the most stable polymorph of calcium carbonate . The other polymorphs are the minerals aragonite and vaterite. Aragonite will change to calcite at 380-470°C, and vaterite is even less stable.-Properties:...

 or aragonite
Aragonite
Aragonite is a carbonate mineral, one of the two common, naturally occurring, crystal forms of calcium carbonate, CaCO3...

)
||
  • foraminifera
    Foraminifera
    The Foraminifera , or forams for short, are a large group of amoeboid protists which are among the commonest plankton species. They have reticulating pseudopods, fine strands of cytoplasm that branch and merge to form a dynamic net...

  • coccolithophores
  • calcareous sponge
    Calcareous sponge
    The calcareous sponges of class Calcarea are members of the animal phylum Porifera, the cellular sponges. They are characterized by spicules made out of calcium carbonate in the form of calcite or aragonite...

     spicules
  • corals
  • Archaeocyatha
    Archaeocyatha
    The Archaeocyatha or archaeocyathids were sessile, reef-building marine organisms of warm tropical and subtropical waters that lived during the early Cambrian period. It is believed that the centre of the Archaeocyatha origin is in East Siberia, where they are first known from the beginning of...

  • bryozoans
  • brachiopod
    Brachiopod
    Brachiopods are a phylum of marine animals that have hard "valves" on the upper and lower surfaces, unlike the left and right arrangement in bivalve molluscs. Brachiopod valves are hinged at the rear end, while the front can be opened for feeding or closed for protection...

     and mollusc shells
  • Echinoderms

|- align="left"
|Silica
||
  • radiolarians
  • diatoms
  • most sponge spicules

|- align="left"
|Apatite
Apatite
Apatite is a group of phosphate minerals, usually referring to hydroxylapatite, fluorapatite, chlorapatite and bromapatite, named for high concentrations of OH−, F−, Cl− or Br− ions, respectively, in the crystal...

(phosphate carbonate)
||
  • enamel
    Tooth enamel
    Tooth enamel, along with dentin, cementum, and dental pulp is one of the four major tissues that make up the tooth in vertebrates. It is the hardest and most highly mineralized substance in the human body. Tooth enamel is also found in the dermal denticles of sharks...

     (Vertebrate
    Vertebrate
    Vertebrates are animals that are members of the subphylum Vertebrata . Vertebrates are the largest group of chordates, with currently about 58,000 species described. Vertebrates include the jawless fishes, bony fishes, sharks and rays, amphibians, reptiles, mammals, and birds...

     teeth)
  • Vertebrate bone
    Bone
    Bones are rigid organs that constitute part of the endoskeleton of vertebrates. They support, and protect the various organs of the body, produce red and white blood cells and store minerals. Bone tissue is a type of dense connective tissue...

  • conodonts

|}

Potential applications

Most traditional approaches to synthesis of nanoscale materials are energy inefficient, requiring stringent conditions (e.g., high temperature, pressure or pH) and often produce toxic byproducts. Furthermore, the quantities produced are small, and the resultant material is usually irreproducible because of the difficulties in controlling agglomeration. In contrast, materials produced by organisms have properties that usually surpass those of analogous synthetically manufactured materials with similar phase composition. Biological materials are assembled in aqueous environments under mild conditions by using macromolecules. Organic macromolecules collect and transport raw materials and assemble these substrates and into short- and long-range ordered composites with consistency and uniformity.
The aim of biomimetics
Biomimetics
Biomimetics is the study of the structure and function of biological systems as models for the design and engineering of materials and machines. It is widely regarded as being synonymous with biomimicry, biomimesis, biognosis and similar to biologically inspired design.-History:The term biomimetics...

 is to mimic the natural way of producing minerals such as apatite
Apatite
Apatite is a group of phosphate minerals, usually referring to hydroxylapatite, fluorapatite, chlorapatite and bromapatite, named for high concentrations of OH−, F−, Cl− or Br− ions, respectively, in the crystal...

s. Many man-made crystals require elevated temperatures and strong chemical solutions, whereas the organisms have long been able to lay down elaborate mineral structures at ambient temperatures. Often, the mineral phases are not pure but are made as composites
Composite material
Composite materials, often shortened to composites or called composition materials, are engineered or naturally occurring materials made from two or more constituent materials with significantly different physical or chemical properties which remain separate and distinct at the macroscopic or...

 that entail an organic part, often protein
Protein
Proteins are biochemical compounds consisting of one or more polypeptides typically folded into a globular or fibrous form, facilitating a biological function. A polypeptide is a single linear polymer chain of amino acids bonded together by peptide bonds between the carboxyl and amino groups of...

, which takes part in and controls the biomineralisation. These composites are often not only as hard as the pure mineral but also tougher, as the micro-environment controls biomineralisation.

Astrobiology

It has been suggested that biominerals could be important indicators of extraterrestrial life and thus could play an important role in the search for past or present life on Mars
Mars
Mars is the fourth planet from the Sun in the Solar System. The planet is named after the Roman god of war, Mars. It is often described as the "Red Planet", as the iron oxide prevalent on its surface gives it a reddish appearance...

. Furthermore, organic components (biosignature
Biosignature
A biosignature is any substance -such as an element, isotope, or molecule - or phenomenon that provides scientific evidence of past or present life. Measurable attributes of life include its complex physical and chemical structures and also its utilization of free energy and the production of...

s) that are often associated with biominerals are believed to play crucial roles in both pre-biotic and biotic reactions.

See also

  • Diatomaceous earth
    Diatomaceous earth
    Diatomaceous earth also known as diatomite or kieselgur/kieselguhr, is a naturally occurring, soft, siliceous sedimentary rock that is easily crumbled into a fine white to off-white powder. It has a particle size ranging from less than 1 micrometre to more than 1 millimetre, but typically 10 to...

  • Magnetotactic bacteria
    Magnetotactic bacteria
    Magnetotactic bacteria are a polyphyletic group of bacteria discovered by Richard P. Blakemore in 1975, that orient along the magnetic field lines of Earth's magnetic field. To perform this task, these bacteria have organelles called magnetosomes that contain magnetic crystals...

  • Biocrystallization
    Biocrystallization
    Biocrystallization is the formation of crystals from organic macromolecules by living organisms. This may be a stress response, a normal part of metabolism such as processes that dispose of waste compounds, or a pathology. Template mediated crystallization is qualitatively different from in vitro...

  • Biointerface
    Biointerface
    A biointerface is the interface between a cell, a biological tissue or a biomaterial with another material. The motivation for biointerface science stems from the urgent need to increase the understanding of interactions between biomolecules and surfaces...

  • Bone mineral
    Bone mineral
    Bone mineral is the inorganic component of bone. Bone mineral is formed from carbonated hydroxyapatite with lower crystallinity....

  • Mineralized tissues
    Mineralized tissues
    Mineralized tissues are biological tissues that incorporate minerals into soft matrices. Typically these tissues form a protective shield or structural support...


External links

The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK