Calculating Space
Encyclopedia
Calculating Space is the title of MIT's English translation of Konrad Zuse
Konrad Zuse
Konrad Zuse was a German civil engineer and computer pioneer. His greatest achievement was the world's first functional program-controlled Turing-complete computer, the Z3, which became operational in May 1941....

's 1969 book Rechnender Raum (literally: "space that is computing"), the first book on digital physics
Digital physics
In physics and cosmology, digital physics is a collection of theoretical perspectives based on the premise that the universe is, at heart, describable by information, and is therefore computable...

.

Zuse proposed that the universe
Universe
The Universe is commonly defined as the totality of everything that exists, including all matter and energy, the planets, stars, galaxies, and the contents of intergalactic space. Definitions and usage vary and similar terms include the cosmos, the world and nature...

 is being computed by some sort of cellular automaton
Cellular automaton
A cellular automaton is a discrete model studied in computability theory, mathematics, physics, complexity science, theoretical biology and microstructure modeling. It consists of a regular grid of cells, each in one of a finite number of states, such as "On" and "Off"...

 or other discrete computing machinery, challenging the long-held view that some physical laws are continuous by nature. He focused on cellular automata as a possible substrate of the computation, and pointed out (among other things) that the classical notions of entropy
Entropy
Entropy is a thermodynamic property that can be used to determine the energy available for useful work in a thermodynamic process, such as in energy conversion devices, engines, or machines. Such devices can only be driven by convertible energy, and have a theoretical maximum efficiency when...

 and its growth
Second law of thermodynamics
The second law of thermodynamics is an expression of the tendency that over time, differences in temperature, pressure, and chemical potential equilibrate in an isolated physical system. From the state of thermodynamic equilibrium, the law deduced the principle of the increase of entropy and...

 do not make sense in deterministically computed universes.

Bell's theorem
Bell's theorem
In theoretical physics, Bell's theorem is a no-go theorem, loosely stating that:The theorem has great importance for physics and the philosophy of science, as it implies that quantum physics must necessarily violate either the principle of locality or counterfactual definiteness...

 is sometimes thought to contradict Zuse's hypothesis, but it is not applicable to deterministic universes, as Bell himself pointed out. Similarly, while Heisenberg's uncertainty principle
Uncertainty principle
In quantum mechanics, the Heisenberg uncertainty principle states a fundamental limit on the accuracy with which certain pairs of physical properties of a particle, such as position and momentum, can be simultaneously known...

 limits in a fundamental way what an observer can observe, when the observer is himself a part of the universe he is trying to observe, that principle does not rule out Zuse's hypothesis, which views any observer as a part of the hypothesized deterministic process. So far there is no unambiguous physical evidence against the possibility that "everything is just a computation," and a large amount has been written about digital physics
Digital physics
In physics and cosmology, digital physics is a collection of theoretical perspectives based on the premise that the universe is, at heart, describable by information, and is therefore computable...

 since Zuse's book appeared.

External links

The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK