Cantellated 6-simplex
Encyclopedia
6-simplex |
Cantellated 6-simplex |
Bicantellated 6-simplex |
Birectified 6-simplex |
Cantitruncated 6-simplex |
Bicantitruncated 6-simplex |
Orthogonal projections in A6 Coxeter plane |
---|
In six-dimensional geometry
Geometry
Geometry arose as the field of knowledge dealing with spatial relationships. Geometry was one of the two fields of pre-modern mathematics, the other being the study of numbers ....
, a cantellated 6-simplex is a convex uniform 6-polytope, being a cantellation of the regular 6-simplex.
There are unique 4 degrees of cantellation for the 6-simplex, including truncations.
Cantellated 6-simplex
Cantellated 6-simplex | |
---|---|
Type | uniform polypeton |
Schläfli symbol | t0,2{3,3,3,3,3} |
Coxeter-Dynkin diagram Coxeter-Dynkin diagram In geometry, a Coxeter–Dynkin diagram is a graph with numerically labeled edges representing the spatial relations between a collection of mirrors... s |
|
5-faces | 35 |
4-faces | 210 |
Cells | 560 |
Faces | 805 |
Edges | 525 |
Vertices | 105 |
Vertex figure Vertex figure In geometry a vertex figure is, broadly speaking, the figure exposed when a corner of a polyhedron or polytope is sliced off.-Definitions - theme and variations:... |
5-cell prism |
Coxeter group Coxeter group In mathematics, a Coxeter group, named after H.S.M. Coxeter, is an abstract group that admits a formal description in terms of mirror symmetries. Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups; the symmetry groups of regular polyhedra are an example... |
A6, [35], order 5040 |
Properties | convex Convex polytope A convex polytope is a special case of a polytope, having the additional property that it is also a convex set of points in the n-dimensional space Rn... |
Coordinates
The vertices of the cantellated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,0,0,1,1,2). This construction is based on facets of the cantellated 7-orthoplexCantellated 7-orthoplex
In seven-dimensional geometry, a cantellated 7-orthoplex is a convex uniform 7-polytope, being a cantellation of the regular 7-orthoplex.There are ten degrees of cantellation for the 7-orthoplex, including truncations...
.
Bicantellated 6-simplex
Bicantellated 6-simplex | |
---|---|
Type | uniform polypeton |
Schläfli symbol | t1,3{3,3,3,3,3} |
Coxeter-Dynkin diagram Coxeter-Dynkin diagram In geometry, a Coxeter–Dynkin diagram is a graph with numerically labeled edges representing the spatial relations between a collection of mirrors... s |
|
5-faces | 49 |
4-faces | 329 |
Cells | 980 |
Faces | 1540 |
Edges | 1050 |
Vertices | 210 |
Vertex figure Vertex figure In geometry a vertex figure is, broadly speaking, the figure exposed when a corner of a polyhedron or polytope is sliced off.-Definitions - theme and variations:... |
|
Coxeter group Coxeter group In mathematics, a Coxeter group, named after H.S.M. Coxeter, is an abstract group that admits a formal description in terms of mirror symmetries. Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups; the symmetry groups of regular polyhedra are an example... |
A6, [35], order 5040 |
Properties | convex Convex polytope A convex polytope is a special case of a polytope, having the additional property that it is also a convex set of points in the n-dimensional space Rn... |
Coordinates
The vertices of the bicantellated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,0,1,1,2,2). This construction is based on facets of the bicantellated 7-orthoplex.Cantitruncated 6-simplex
cantitruncated 6-simplex | |
---|---|
Type | uniform polypeton |
Schläfli symbol | t0,1,2{3,3,3,3,3} |
Coxeter-Dynkin diagram Coxeter-Dynkin diagram In geometry, a Coxeter–Dynkin diagram is a graph with numerically labeled edges representing the spatial relations between a collection of mirrors... s |
|
5-faces | 35 |
4-faces | 210 |
Cells | 560 |
Faces | 805 |
Edges | 630 |
Vertices | 210 |
Vertex figure Vertex figure In geometry a vertex figure is, broadly speaking, the figure exposed when a corner of a polyhedron or polytope is sliced off.-Definitions - theme and variations:... |
|
Coxeter group Coxeter group In mathematics, a Coxeter group, named after H.S.M. Coxeter, is an abstract group that admits a formal description in terms of mirror symmetries. Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups; the symmetry groups of regular polyhedra are an example... |
A6, [35], order 5040 |
Properties | convex Convex polytope A convex polytope is a special case of a polytope, having the additional property that it is also a convex set of points in the n-dimensional space Rn... |
Coordinates
The vertices of the cantitruncated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,0,0,1,2,3). This construction is based on facets of the cantitruncated 7-orthoplex.Bicantitruncated 6-simplex
bicantitruncated 6-simplex | |
---|---|
Type | uniform polypeton |
Schläfli symbol | t1,2,3{3,3,3,3,3} |
Coxeter-Dynkin diagram Coxeter-Dynkin diagram In geometry, a Coxeter–Dynkin diagram is a graph with numerically labeled edges representing the spatial relations between a collection of mirrors... s |
|
5-faces | 49 |
4-faces | 329 |
Cells | 980 |
Faces | 1540 |
Edges | 1260 |
Vertices | 420 |
Vertex figure Vertex figure In geometry a vertex figure is, broadly speaking, the figure exposed when a corner of a polyhedron or polytope is sliced off.-Definitions - theme and variations:... |
|
Coxeter group Coxeter group In mathematics, a Coxeter group, named after H.S.M. Coxeter, is an abstract group that admits a formal description in terms of mirror symmetries. Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups; the symmetry groups of regular polyhedra are an example... |
A6, [35], order 5040 |
Properties | convex Convex polytope A convex polytope is a special case of a polytope, having the additional property that it is also a convex set of points in the n-dimensional space Rn... |
Coordinates
The vertices of the bicantitruncated 6-simplex can be most simply positioned in 7-space as permutations of (0,0,0,1,2,3,3). This construction is based on facets of the bicantitruncated 7-orthoplex.Related uniform 6-polytopes
The truncated 6-simplex is one of 35 uniform 6-polytopes based on the [3,3,3,3,3] Coxeter groupCoxeter group
In mathematics, a Coxeter group, named after H.S.M. Coxeter, is an abstract group that admits a formal description in terms of mirror symmetries. Indeed, the finite Coxeter groups are precisely the finite Euclidean reflection groups; the symmetry groups of regular polyhedra are an example...
, all shown here in A6 Coxeter plane orthographic projection
Orthographic projection
Orthographic projection is a means of representing a three-dimensional object in two dimensions. It is a form of parallel projection, where all the projection lines are orthogonal to the projection plane, resulting in every plane of the scene appearing in affine transformation on the viewing surface...
s.