Ceramic colorants
Encyclopedia
'Ceramic colorants' are added to a glaze or a clay to create color. Carbonate
s and oxide
s of certain metals, characterize most colorants including the commonly used cobalt carbonate
, cobalt oxide
, chrome oxide
, red iron oxide
, and copper carbonate. These colorants can create a multitude of colors depending on other materials they interact with and to which temperature and in which atmosphere they are fired.
is commonly used in either its carbonate (CoCO3) or its oxide (Co3O4) forms. In the presence of most fluxes, it yields blue colors ranging from low saturation pastels to high saturation midnight blues in both oxidation and reduction atmospheres. However, in the presence of magnesium, cobalt can become purple, pink or reddish blue depending on whether it was fired in oxidation (yields purple) or reduction. Cobalt is also commonly used in black glazes and in washes as decorative medium. Common saturation percentages for low saturation range from (.25 to .5%) and in high saturation from (1 to 2%).
is commonly used as a colorant in its red iron oxide form as (Fe2O3). Red iron oxide is commonly used to produce earthy reds and browns. It is the metal responsible for making earthenwares red. Iron is also another tricky colorant because of its ability to yield different colors under different circumstances. At low percentages (.5-1%) and in the presence of potassium, iron will become light blue or light blue-green in reduction (as is seen in traditional celadons). In the presence of barium, iron may become yellow green. When used in combination with calcium, red iron oxide can become pale yellow or amber in oxidation or green in reduction. Common percentages for red iron oxide range from (4 up to 10%).
glazes with copper fired in reduction atmospheres will often yield ox blood or copper red glazes discovered by the Chinese. When fired above cone ^8 copper can become unstable and will often fume off of a glaze in vapor form.
Carbonate
In chemistry, a carbonate is a salt of carbonic acid, characterized by the presence of the carbonate ion, . The name may also mean an ester of carbonic acid, an organic compound containing the carbonate group C2....
s and oxide
Oxide
An oxide is a chemical compound that contains at least one oxygen atom in its chemical formula. Metal oxides typically contain an anion of oxygen in the oxidation state of −2....
s of certain metals, characterize most colorants including the commonly used cobalt carbonate
Cobalt carbonate
Cobalt carbonate is the inorganic compound with the formula CoCO3. This reddish paramagnetic solid is an intermediate in the hydrometallurgical purification of cobalt from its ores, as an inorganic pigment, and as a precursor to catalysts. Commercially available pale violet basic cobalt...
, cobalt oxide
Cobalt oxide
Cobalt oxide may refer to*Cobalt oxide - CoO*Cobalt oxide - Co2O3*Cobalt oxide - Co3O4...
, chrome oxide
Chromium(III) oxide
Chromium oxide is the inorganic compound of the formula Cr2O3. It is one of principal oxides of chromium and is used as a pigment. In nature, it occurs as the rare mineral eskolaite.-Structure and properties:...
, red iron oxide
Iron(III) oxide
Iron oxide or ferric oxide is the inorganic compound with the formula Fe2O3. It is one of the three main oxides of iron, the other two being iron oxide , which is rare, and iron oxide , which also occurs naturally as the mineral magnetite. As the mineral known as hematite, Fe2O3 is the main...
, and copper carbonate. These colorants can create a multitude of colors depending on other materials they interact with and to which temperature and in which atmosphere they are fired.
Cobalt
CobaltCobalt
Cobalt is a chemical element with symbol Co and atomic number 27. It is found naturally only in chemically combined form. The free element, produced by reductive smelting, is a hard, lustrous, silver-gray metal....
is commonly used in either its carbonate (CoCO3) or its oxide (Co3O4) forms. In the presence of most fluxes, it yields blue colors ranging from low saturation pastels to high saturation midnight blues in both oxidation and reduction atmospheres. However, in the presence of magnesium, cobalt can become purple, pink or reddish blue depending on whether it was fired in oxidation (yields purple) or reduction. Cobalt is also commonly used in black glazes and in washes as decorative medium. Common saturation percentages for low saturation range from (.25 to .5%) and in high saturation from (1 to 2%).
Chrome
"Chrome is a rather versatile and fickle colorant," (Chappell). Chrome oxide (Cr2O3) is commonly used for achieving greens. However, in the presence of zinc, chrome can produce brown. Glazes with tin oxide present will often blush to pink if fumed with chrome or if chrome is present in the glaze with the tin, often intense pinks occur. If fired above cone ^6, chrome will fume and become a gas in the kiln. Common saturation percentages for chrome at low saturation range from (.25 to .5%) and at higher percentages from (1 to 2%). Chrome is a refractory.Red Iron
IronIron
Iron is a chemical element with the symbol Fe and atomic number 26. It is a metal in the first transition series. It is the most common element forming the planet Earth as a whole, forming much of Earth's outer and inner core. It is the fourth most common element in the Earth's crust...
is commonly used as a colorant in its red iron oxide form as (Fe2O3). Red iron oxide is commonly used to produce earthy reds and browns. It is the metal responsible for making earthenwares red. Iron is also another tricky colorant because of its ability to yield different colors under different circumstances. At low percentages (.5-1%) and in the presence of potassium, iron will become light blue or light blue-green in reduction (as is seen in traditional celadons). In the presence of barium, iron may become yellow green. When used in combination with calcium, red iron oxide can become pale yellow or amber in oxidation or green in reduction. Common percentages for red iron oxide range from (4 up to 10%).
Copper
Copper's carbonate form (CuCO3) is commonly used to produce greens, turquoise, and copper reds. If need be, copper oxide (CuO) can be substituted but has a larger particle size and glazes should be adjusted to generally half the amount called for. In barium based glazes greenish blues often result from copper. Alkaline feldsparFeldspar
Feldspars are a group of rock-forming tectosilicate minerals which make up as much as 60% of the Earth's crust....
glazes with copper fired in reduction atmospheres will often yield ox blood or copper red glazes discovered by the Chinese. When fired above cone ^8 copper can become unstable and will often fume off of a glaze in vapor form.