Coherent backscattering
Encyclopedia
In physics, coherent backscattering is observed when coherent
radiation (such as a laser
beam) propagates through a medium which has a large number of scattering
centers (such as milk or a thick cloud) of size comparable to the wavelength of the radiation.
The waves are scattered many times while traveling through the medium. Even for incoherent radiation, the scattering typically reaches a local maximum in the direction of backscattering. For coherent radiation, however, the peak is two times higher.
Coherent backscattering is very difficult to detect and measure for two reasons. The first is fairly obvious, that it is difficult to measure the direct backscatter without blocking the beam, but there are methods for overcoming this problem. The second is that the peak is usually extremely sharp around the backward direction, so that a very high level of angular resolution
is needed for the detector to see the peak without averaging its intensity out over the surrounding angles where the intensity can undergo large dips. At angles other than the backscatter direction, the light intensity is subject to numerous essentially random fluctuations called speckles.
This is one of the most robust interference phenomena that survives multiple scattering, and it is regarded as an aspect of a quantum mechanical
phenomenon known as weak localization
(Akkermans et al. 1986). In weak localization, interference of the direct and reverse paths leads to a net reduction of light transport in the forward direction. This phenomenon is typical of any coherent wave which is multiple scattered. It is typically discussed for light waves, for which it is similar to the weak localization phenomenon for electrons in disordered (semi)conductors and often seen as the precursor to Anderson (or strong) localization of light. Weak localization of light can be detected since it is manifested as an enhancement of light intensity in the backscattering direction. This substantial enhancement is called the cone of coherent backscattering.
Coherent backscattering has its origin in the interference between direct and reverse paths in the backscattering direction. When a multiply scattering medium is illuminated by a laser beam, the scattered intensity results from the interference between the amplitudes associated with the various scattering paths; for a disordered medium, the interference terms are washed out when averaged over many sample configurations, except in a narrow angular range around exact backscattering where the average intensity is enhanced. This phenomenon, is the result of many sinusoidal two-waves interference patterns which add up. The cone is the Fourier transform of the spatial distribution of the intensity of the scattered light on the sample surface, when the latter is illuminated by a point-like source. The enhanced backscattering relies on the constructive interference between reverse paths. One can make an analogy with a Young's interference experiment, where two diffracting slits would be positioned in place of the "input" and "output" scatterers.
Coherence (physics)
In physics, coherence is a property of waves that enables stationary interference. More generally, coherence describes all properties of the correlation between physical quantities of a wave....
radiation (such as a laser
Laser
A laser is a device that emits light through a process of optical amplification based on the stimulated emission of photons. The term "laser" originated as an acronym for Light Amplification by Stimulated Emission of Radiation...
beam) propagates through a medium which has a large number of scattering
Scattering
Scattering is a general physical process where some forms of radiation, such as light, sound, or moving particles, are forced to deviate from a straight trajectory by one or more localized non-uniformities in the medium through which they pass. In conventional use, this also includes deviation of...
centers (such as milk or a thick cloud) of size comparable to the wavelength of the radiation.
The waves are scattered many times while traveling through the medium. Even for incoherent radiation, the scattering typically reaches a local maximum in the direction of backscattering. For coherent radiation, however, the peak is two times higher.
Coherent backscattering is very difficult to detect and measure for two reasons. The first is fairly obvious, that it is difficult to measure the direct backscatter without blocking the beam, but there are methods for overcoming this problem. The second is that the peak is usually extremely sharp around the backward direction, so that a very high level of angular resolution
Angular resolution
Angular resolution, or spatial resolution, describes the ability of any image-forming device such as an optical or radio telescope, a microscope, a camera, or an eye, to distinguish small details of an object...
is needed for the detector to see the peak without averaging its intensity out over the surrounding angles where the intensity can undergo large dips. At angles other than the backscatter direction, the light intensity is subject to numerous essentially random fluctuations called speckles.
This is one of the most robust interference phenomena that survives multiple scattering, and it is regarded as an aspect of a quantum mechanical
Quantum mechanics
Quantum mechanics, also known as quantum physics or quantum theory, is a branch of physics providing a mathematical description of much of the dual particle-like and wave-like behavior and interactions of energy and matter. It departs from classical mechanics primarily at the atomic and subatomic...
phenomenon known as weak localization
Weak localization
Weak localization is a physical effect which occurs in disordered electronic systems at very low temperatures. The effect manifests itself as a positive correction to the resistivity of a metal or semiconductor....
(Akkermans et al. 1986). In weak localization, interference of the direct and reverse paths leads to a net reduction of light transport in the forward direction. This phenomenon is typical of any coherent wave which is multiple scattered. It is typically discussed for light waves, for which it is similar to the weak localization phenomenon for electrons in disordered (semi)conductors and often seen as the precursor to Anderson (or strong) localization of light. Weak localization of light can be detected since it is manifested as an enhancement of light intensity in the backscattering direction. This substantial enhancement is called the cone of coherent backscattering.
Coherent backscattering has its origin in the interference between direct and reverse paths in the backscattering direction. When a multiply scattering medium is illuminated by a laser beam, the scattered intensity results from the interference between the amplitudes associated with the various scattering paths; for a disordered medium, the interference terms are washed out when averaged over many sample configurations, except in a narrow angular range around exact backscattering where the average intensity is enhanced. This phenomenon, is the result of many sinusoidal two-waves interference patterns which add up. The cone is the Fourier transform of the spatial distribution of the intensity of the scattered light on the sample surface, when the latter is illuminated by a point-like source. The enhanced backscattering relies on the constructive interference between reverse paths. One can make an analogy with a Young's interference experiment, where two diffracting slits would be positioned in place of the "input" and "output" scatterers.
See also
- Back scattering alignmentBack scattering alignmentThe Back Scattering Alignment is a coordinate system used in coherent electromagnetic scattering. The coordinate system is defined from the viewpoint of the wave source, before and after scattering. The BSA is most commonly used in radar, specifically when working with a Sinclair Matrix because...
(BSA), a coordinate system most commonly used in radar - Forward Scattering AlignmentForward scattering alignmentThe Forward Scattering Alignment is a coordinate system used in coherent electromagnetic scattering.The coordinate system is defined from the viewpoint of the electromagnetic wave, before and after scattering...
(FSA), a coordinate system primarily used in optics - Opposition surgeOpposition surgeThe opposition surge is the brightening of a rough surface, or an object with many particles, when illuminated from directly behind the observer...
An astronomical phenomenon caused by the coherent backscatter effect