Dengue virus
Encyclopedia
Dengue virus in one of four serotypes is the cause of dengue fever
. It is a mosquito
-borne single positive-stranded RNA virus of the family Flaviviridae; genus Flavivirus. All four serotypes can cause the full spectrum of disease.
Its genome is about 11000 bases that codes for three structural proteins, capsid protein C, membrane protein M, envelope protein E; seven nonstructural proteins, NS1, NS2a, NS2b, NS3, NS4a, NS4b, NS5; and short non-coding regions on both the 5' and 3' ends. Further classification of each serotype into genotypes often relates to the region where particular strains are commonly found or were first found.
The glycoprotein shell of the mature DENV virion consists of 180 copies each of the E protein and M protein. The immature virion starts out with the E and prM proteins forming 90 heterodimers that give a spiky exterior to the viral particle. This immature viral particle buds into the endoplasmic reticulum and eventually travels via the secretory pathway to the Golgi apparatus. As the virion passes through the trans-Golgi Network (TGN) it is exposed to low pH. This acidic environment causes a conformational change in the E protein which disassociates it from the prM protein and causes it to form E homodimers. These homodimers lie flat against the viral surface giving the maturing virion a smooth appearance. During this maturation pr peptide is cleaved from the M peptide by the host protease, furin. The M protein then acts as a transmembrane protein under the E-protein shell of the mature virion. The pr peptide stays associated with the E protein until the viral particle is released into the extracellular environment. This pr peptide acts like a cap, covering the hydrophobic fusion loop of the E protein until the viral particle has exited the cell.
Dengue fever
Dengue fever , also known as breakbone fever, is an infectious tropical disease caused by the dengue virus. Symptoms include fever, headache, muscle and joint pains, and a characteristic skin rash that is similar to measles...
. It is a mosquito
Mosquito
Mosquitoes are members of a family of nematocerid flies: the Culicidae . The word Mosquito is from the Spanish and Portuguese for little fly...
-borne single positive-stranded RNA virus of the family Flaviviridae; genus Flavivirus. All four serotypes can cause the full spectrum of disease.
Its genome is about 11000 bases that codes for three structural proteins, capsid protein C, membrane protein M, envelope protein E; seven nonstructural proteins, NS1, NS2a, NS2b, NS3, NS4a, NS4b, NS5; and short non-coding regions on both the 5' and 3' ends. Further classification of each serotype into genotypes often relates to the region where particular strains are commonly found or were first found.
Evolution
The Dengue 1 virus appears to have evolved in the early 19th century Based on the analysis of the envelope protein there are at least four genotypes (1 to 4). The rate of nucleotide substitution for this virus has been to be 6.5×10-4 per nucleotide per year, a rate similar to other RNA viruses. The American African genotype has been estimated to have evolved between 1907 to 1949. This period includes World War I and II which were associated with considerable movement of populations and environmental disturbance, factors known to promote the evolution of new vector borne viral species.Life cycle
The primary life cycle of the dengue virus involves humans and mosquitoes. There is also another cycle in Africa and also on Asia, which involves non human primates.E protein
The DENV E (envelope) protein, found on the viral surface, is important in the initial attachment of the viral particle to the host cell. Several molecules which interact with the viral E protein (ICAM3-grabbing non-integrin., CD209 , Rab 5 , GRP 78 , and The Mannose Receptor )have been shown to be important factors mediating attachment and viral entry.prM/M protein
The DENV prM (membrane) protein, which is important in the formation and maturation of the viral particle, consists of seven antiparallel β-strands stabilized by three disulphide bonds.The glycoprotein shell of the mature DENV virion consists of 180 copies each of the E protein and M protein. The immature virion starts out with the E and prM proteins forming 90 heterodimers that give a spiky exterior to the viral particle. This immature viral particle buds into the endoplasmic reticulum and eventually travels via the secretory pathway to the Golgi apparatus. As the virion passes through the trans-Golgi Network (TGN) it is exposed to low pH. This acidic environment causes a conformational change in the E protein which disassociates it from the prM protein and causes it to form E homodimers. These homodimers lie flat against the viral surface giving the maturing virion a smooth appearance. During this maturation pr peptide is cleaved from the M peptide by the host protease, furin. The M protein then acts as a transmembrane protein under the E-protein shell of the mature virion. The pr peptide stays associated with the E protein until the viral particle is released into the extracellular environment. This pr peptide acts like a cap, covering the hydrophobic fusion loop of the E protein until the viral particle has exited the cell.