Dermal fibroblast
Encyclopedia
Dermal fibroblasts are cell
s that live within the dermis
layer of skin
which are responsible for generating connective tissue
and allowing the skin to recover from injury. Using organelles (particularly the rough endoplasmic reticulum), dermal fibroblasts generate and maintain the connective tissue
which unites separate cell layers. Furthermore, these dermal fibroblasts produce the protein molecules including laminin and fibronectin which comprise the extracellular matrix
. By creating the extracellular matrix between the dermis and epidermis, fibroblasts allow the epithelial cells of the epidermis
to affix the matrix, thereby allowing the epidermal cells to effectively join together to form the top layer of the skin.
s within the body. Like corneal fibroblasts, dermal fibroblast proliferation can stimulated by the presence of fibroblast growth factor (FGF). Fibroblasts do not appear to be fully differentiated or specialized. After examining the CD markers of the fibroblast cells, researchers at BioMed Central discovered that these cell lack "distinctive markers" confirming that these cells can be further differentiated.
One example of further differentiation of dermal fibroblasts is that upon injury, dermal fibroblasts can give rise to myofibroblasts, fibroblast cells with smooth muscle characteristics. Dermal cells differentiate into myofibroblasts by altering their actin gene expression (which is silenced in dermal fibroblasts)..}} When dermal fibroblasts express actin,the cells can slowly contract. This contraction plays a critical role in wound healing and fibrosis
. By pulling tissues closed differentiated myofibroblasts, seal the skin after a injury (thereby, preventing infection but inducing scar formation. Interestingly, myofibroblasts can also be derived from non-fibroblast sources. Based on evidence of α-SMA expression from lung injuries, myofibroblasts can "arise de novo" directly from mesenchymal stem cells.
Furthermore, dermal fibroblasts are less likely to replicate in either in vivo and in vitro environments than are other fibroblast types. Dermal fibroblasts require far higher concentrations of fibroblast growth factor (FGF) in order to undergo cell replication.
Dermal fibroblasts are responsible for creating the ECM which organizes the stratified squamous epithelial cells of the epidermis
into a unified tissue. Furthermore, dermal fibroblasts create long fibrous bands of connective tissue which anchor the skin to the fascia of the body. Therefore, without dermal fibroblasts, the largest and heaviest organ would not tightly snugly adhere to body's frame.
Similarly, FGF is being inserted into fibrin sealants to enhance the long term repair and sealing of tissue. FGF-1 has been experimentally shown to encourage the body’s own adhesive tissue to develop and effectively seal the wound (thereby stymieing infection and mitigating scar formation). Using FGF stimulate fibroblast activity is a more effective means of sealing tissue than current tissue sealants due to the robust nature of collagen
which makes up connective tissue. A study conducted by researchers at the University of Alabama examined the adhesive properties of fibrin tissue adhesives. The tests found that fibrin adhesives even at its intended medical concentration (29 mg/mL at the wound site) had shear strength of only 17.6 kiloPascals. Furthermore, another study performed at the University of California determined that the modulus (the stress/strain) of fibrin adhesives was on average 53.56 kPA. To seal together tissues the human body uses collagen and elastin to obtain superior shear strength. Type I collagen which includes collagen strands bundled into strong fibrils has a unique tri-helical structure which increases the proteins structural integrity. In fact, a study performed by the Department of Mechanical Engineering within King’s College of London experimentally determined that pure type I collagen has a modulus of 5 GPa to 11.5 GPa. Therefore, pure type I collagen has nearly one million times greater structural integrity than fibrin. Collagen is therefore much harder to deform than fibrin, and collagen fibers create much stronger bonds between tissues than strands of fibrin polymer.
. As noted by researchers at the Harvard Stem Cell Institute, dermal cell "human keratinocyte [stem cells] could be propagated in vitro when culture on fibroblast feeder cells."
In addition to improving the culture and proliferation of stem cells, dermal fibroblasts can also become stem cells. Although dermal cells demonstrate less plasticity than other fibroblast cell types, researchers can still turn these cells into induced pluripotent cells (IPCs).
As noted by researchers within the Harvard Stem Cell Institute, researchers obtained fibroblasts from a mouse with sickle cell anemia and, using a virus, "reprogrammed these cells into pluripotent [stem cells], corrected the genetic deficiency by homologous recombination, and redirected these pluripotent cells toward the hematopoietic lineages, and transplanted these engineered cells to a lethally irradiated mice." The animals which received the fibroblast stem cell treatment exhibited increased activity levels, indicating recovery from the disorder.
Cell
-Science and technology:*Cell , the functional basic unit of life*Cell , a term used in an electronic circuit design schematics*Cell , a three-dimensional element, part of a higher-dimensional object*Cell , a scientific journal...
s that live within the dermis
Dermis
The dermis is a layer of skin between the epidermis and subcutaneous tissues, and is composed of two layers, the papillary and reticular dermis...
layer of skin
Skin
-Dermis:The dermis is the layer of skin beneath the epidermis that consists of connective tissue and cushions the body from stress and strain. The dermis is tightly connected to the epidermis by a basement membrane. It also harbors many Mechanoreceptors that provide the sense of touch and heat...
which are responsible for generating connective tissue
Connective tissue
"Connective tissue" is a fibrous tissue. It is one of the four traditional classes of tissues . Connective Tissue is found throughout the body.In fact the whole framework of the skeleton and the different specialized connective tissues from the crown of the head to the toes determine the form of...
and allowing the skin to recover from injury. Using organelles (particularly the rough endoplasmic reticulum), dermal fibroblasts generate and maintain the connective tissue
Connective tissue
"Connective tissue" is a fibrous tissue. It is one of the four traditional classes of tissues . Connective Tissue is found throughout the body.In fact the whole framework of the skeleton and the different specialized connective tissues from the crown of the head to the toes determine the form of...
which unites separate cell layers. Furthermore, these dermal fibroblasts produce the protein molecules including laminin and fibronectin which comprise the extracellular matrix
Extracellular matrix
In biology, the extracellular matrix is the extracellular part of animal tissue that usually provides structural support to the animal cells in addition to performing various other important functions. The extracellular matrix is the defining feature of connective tissue in animals.Extracellular...
. By creating the extracellular matrix between the dermis and epidermis, fibroblasts allow the epithelial cells of the epidermis
Epidermis
Epidermis may refer to:* Epidermis , in plants, the outermost layer of cells covering the leaves and young parts of a plant* Epidermis , the outermost layer of the skin of a human...
to affix the matrix, thereby allowing the epidermal cells to effectively join together to form the top layer of the skin.
Cell progenitors and analogs
Dermal fibroblasts are derived from mesenchymal stem cellMesenchymal stem cell
Mesenchymal stem cells, or MSCs, are multipotent stem cells that can differentiate into a variety of cell types, including: osteoblasts , chondrocytes and adipocytes...
s within the body. Like corneal fibroblasts, dermal fibroblast proliferation can stimulated by the presence of fibroblast growth factor (FGF). Fibroblasts do not appear to be fully differentiated or specialized. After examining the CD markers of the fibroblast cells, researchers at BioMed Central discovered that these cell lack "distinctive markers" confirming that these cells can be further differentiated.
One example of further differentiation of dermal fibroblasts is that upon injury, dermal fibroblasts can give rise to myofibroblasts, fibroblast cells with smooth muscle characteristics. Dermal cells differentiate into myofibroblasts by altering their actin gene expression (which is silenced in dermal fibroblasts)..}} When dermal fibroblasts express actin,the cells can slowly contract. This contraction plays a critical role in wound healing and fibrosis
Fibrosis
Fibrosis is the formation of excess fibrous connective tissue in an organ or tissue in a reparative or reactive process. This is as opposed to formation of fibrous tissue as a normal constituent of an organ or tissue...
. By pulling tissues closed differentiated myofibroblasts, seal the skin after a injury (thereby, preventing infection but inducing scar formation. Interestingly, myofibroblasts can also be derived from non-fibroblast sources. Based on evidence of α-SMA expression from lung injuries, myofibroblasts can "arise de novo" directly from mesenchymal stem cells.
Cell function and characteristics
Unlike other fibroblast cell types, dermal fibroblasts are far less likely to change into other cell types. For example, when a dermal fibroblast and a corneal fibroblasts are placed in the same concentrations of fibroblast growth factor, dermal fibroblast will not differentiate or change. As noted by Dr. J. Lewis and Dr. A. Johnson authors of Microbiology of the Cell, "fibroblasts from the skin are different" and behave differently than other fibroblast cells to identical chemical stimuli.Furthermore, dermal fibroblasts are less likely to replicate in either in vivo and in vitro environments than are other fibroblast types. Dermal fibroblasts require far higher concentrations of fibroblast growth factor (FGF) in order to undergo cell replication.
Dermal fibroblasts are responsible for creating the ECM which organizes the stratified squamous epithelial cells of the epidermis
Epidermis
Epidermis may refer to:* Epidermis , in plants, the outermost layer of cells covering the leaves and young parts of a plant* Epidermis , the outermost layer of the skin of a human...
into a unified tissue. Furthermore, dermal fibroblasts create long fibrous bands of connective tissue which anchor the skin to the fascia of the body. Therefore, without dermal fibroblasts, the largest and heaviest organ would not tightly snugly adhere to body's frame.
Clinical Applications
Since dermal fibroblasts play a critical role in wound healing, researchers are attempting to generate mature dermal fibroblasts to repair second and third degree burns. When the body sustains a third degree burn, the skin's dermal layer is completely destroyed by heat (and the all fibroblast cells within the wound site perish. Without fibroblasts, the wound site cannot regenerate extracellular matrix and epidermis skin cells cannot proliferate over the wound site. Therefore, without dermal fibroblasts the skin cannot properly recover from injury. Yet, by differentiating mesenchymal stem cells from other regions of the body and injecting them into the wound site, scientists can restore dermal fibroblasts to burned regions of the body. By restoring fibroblasts to the burned regions, the body can restore the ECM within the wound site and recover from the injury. As noted "The injured dermis is also repaired by the recruitment and proliferation of fibroblasts producing extracellular matrix and keratinocyte growth promoting factors."Similarly, FGF is being inserted into fibrin sealants to enhance the long term repair and sealing of tissue. FGF-1 has been experimentally shown to encourage the body’s own adhesive tissue to develop and effectively seal the wound (thereby stymieing infection and mitigating scar formation). Using FGF stimulate fibroblast activity is a more effective means of sealing tissue than current tissue sealants due to the robust nature of collagen
Collagen
Collagen is a group of naturally occurring proteins found in animals, especially in the flesh and connective tissues of mammals. It is the main component of connective tissue, and is the most abundant protein in mammals, making up about 25% to 35% of the whole-body protein content...
which makes up connective tissue. A study conducted by researchers at the University of Alabama examined the adhesive properties of fibrin tissue adhesives. The tests found that fibrin adhesives even at its intended medical concentration (29 mg/mL at the wound site) had shear strength of only 17.6 kiloPascals. Furthermore, another study performed at the University of California determined that the modulus (the stress/strain) of fibrin adhesives was on average 53.56 kPA. To seal together tissues the human body uses collagen and elastin to obtain superior shear strength. Type I collagen which includes collagen strands bundled into strong fibrils has a unique tri-helical structure which increases the proteins structural integrity. In fact, a study performed by the Department of Mechanical Engineering within King’s College of London experimentally determined that pure type I collagen has a modulus of 5 GPa to 11.5 GPa. Therefore, pure type I collagen has nearly one million times greater structural integrity than fibrin. Collagen is therefore much harder to deform than fibrin, and collagen fibers create much stronger bonds between tissues than strands of fibrin polymer.
Stem Cells
By generating adhesive proteins like fibronectin, fibroblasts are used within research laboratories to help to culture cells which typically demonstrate low survival rates in vitro. For example, fibroblasts have been utilized to increase the survival rate for human stem cells which easily undergo cell apoptosisApoptosis
Apoptosis is the process of programmed cell death that may occur in multicellular organisms. Biochemical events lead to characteristic cell changes and death. These changes include blebbing, cell shrinkage, nuclear fragmentation, chromatin condensation, and chromosomal DNA fragmentation...
. As noted by researchers at the Harvard Stem Cell Institute, dermal cell "human keratinocyte [stem cells] could be propagated in vitro when culture on fibroblast feeder cells."
In addition to improving the culture and proliferation of stem cells, dermal fibroblasts can also become stem cells. Although dermal cells demonstrate less plasticity than other fibroblast cell types, researchers can still turn these cells into induced pluripotent cells (IPCs).
As noted by researchers within the Harvard Stem Cell Institute, researchers obtained fibroblasts from a mouse with sickle cell anemia and, using a virus, "reprogrammed these cells into pluripotent [stem cells], corrected the genetic deficiency by homologous recombination, and redirected these pluripotent cells toward the hematopoietic lineages, and transplanted these engineered cells to a lethally irradiated mice." The animals which received the fibroblast stem cell treatment exhibited increased activity levels, indicating recovery from the disorder.
See also
- Fibroblasts
- Corneal keratocyteCorneal keratocyteCorneal keratocytes are specialized fibroblasts residing in the stroma. This corneal layer, representing about 85-90% of corneal thickness, is built up from highly regular collagenous lamellae and extracellular matrix components. Keratocytes play the major role in keeping it transparent, healing...
- Stem Cells
- Induced Pluripotent Cells
- Cluster of differentiationCluster of differentiationThe cluster of differentiation is a protocol used for the identification and investigation of cell surface molecules present on white blood cells, providing targets for immunophenotyping of cells...
- extracellular matrixExtracellular matrixIn biology, the extracellular matrix is the extracellular part of animal tissue that usually provides structural support to the animal cells in addition to performing various other important functions. The extracellular matrix is the defining feature of connective tissue in animals.Extracellular...
- dermisDermisThe dermis is a layer of skin between the epidermis and subcutaneous tissues, and is composed of two layers, the papillary and reticular dermis...
- hypodermisHypodermisThe hypodermis, also called the hypoderm, subcutaneous tissue, or superficial fascia is the lowermost layer of the integumentary system in vertebrates. Types of cells that are found in the hypodermis are fibroblasts, adipose cells, and macrophages...