Dini's theorem
Encyclopedia
In the mathematical
Mathematics
Mathematics is the study of quantity, space, structure, and change. Mathematicians seek out patterns and formulate new conjectures. Mathematicians resolve the truth or falsity of conjectures by mathematical proofs, which are arguments sufficient to convince other mathematicians of their validity...

 field of analysis
Mathematical analysis
Mathematical analysis, which mathematicians refer to simply as analysis, has its beginnings in the rigorous formulation of infinitesimal calculus. It is a branch of pure mathematics that includes the theories of differentiation, integration and measure, limits, infinite series, and analytic functions...

, Dini's theorem states that if X is a compact
Compact space
In mathematics, specifically general topology and metric topology, a compact space is an abstract mathematical space whose topology has the compactness property, which has many important implications not valid in general spaces...

 topological space
Topological space
Topological spaces are mathematical structures that allow the formal definition of concepts such as convergence, connectedness, and continuity. They appear in virtually every branch of modern mathematics and are a central unifying notion...

, and { fn } is a monotonically increasing sequence
Sequence
In mathematics, a sequence is an ordered list of objects . Like a set, it contains members , and the number of terms is called the length of the sequence. Unlike a set, order matters, and exactly the same elements can appear multiple times at different positions in the sequence...

 (meaning fn( x ) ≤ fn+1( x ) for all n and x) of continuous
Continuous function
In mathematics, a continuous function is a function for which, intuitively, "small" changes in the input result in "small" changes in the output. Otherwise, a function is said to be "discontinuous". A continuous function with a continuous inverse function is called "bicontinuous".Continuity of...

 real-valued function
Real-valued function
In mathematics, a real-valued function is a function that associates to every element of the domain a real number in the image....

s on X which converges pointwise
Pointwise convergence
In mathematics, pointwise convergence is one of various senses in which a sequence of functions can converge to a particular function.-Definition:...

 to a continuous function f, then the convergence is uniform. The same conclusion holds if { fn } is monotonically decreasing instead of increasing.

This is one of the few situations in mathematics where pointwise convergence implies uniform convergence; the key is the greater control implied by the monotonicity. Note also that the limit function must be continuous, since a uniform limit of continuous functions is necessarily continuous. (if the limit function is not required to be continuous, the theorem doesn't hold, as seen by the sequence fn(x)=xn over [0,1]).

Proof

Let ε > 0 be given. For each n, let gn = ffn, and let En be those xX such that gn( x ) < ε. Each gn is continuous, and so each En is open. Since { fn } is monotonically increasing, { gn } is monotonically decreasing, it follows that the sequence En is ascending. Since fn converges pointwise to f, it follows that the collection { En } is an open cover of X. By compactness, we obtain that there is some positive integer N such that EN = X. That is, if n > N and x is a point in X, then |f( x ) − fn( x )| < ε, as desired.
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK