EDG2
Encyclopedia
Lysophosphatidic acid receptor 1 also known as LPA1 is a protein
Protein
Proteins are biochemical compounds consisting of one or more polypeptides typically folded into a globular or fibrous form, facilitating a biological function. A polypeptide is a single linear polymer chain of amino acids bonded together by peptide bonds between the carboxyl and amino groups of...

 that in humans is encoded by the LPAR1 gene
Gene
A gene is a molecular unit of heredity of a living organism. It is a name given to some stretches of DNA and RNA that code for a type of protein or for an RNA chain that has a function in the organism. Living beings depend on genes, as they specify all proteins and functional RNA chains...

. LPA1 is a G protein-coupled receptor
G protein-coupled receptor
G protein-coupled receptors , also known as seven-transmembrane domain receptors, 7TM receptors, heptahelical receptors, serpentine receptor, and G protein-linked receptors , comprise a large protein family of transmembrane receptors that sense molecules outside the cell and activate inside signal...

 that binds the lipid signaling molecule lysophosphatidic acid
Lysophosphatidic acid
Lysophosphatidic acid is a phospholipid derivative that can act as a signaling molecule.-Function:LPA acts as a potent mitogen due to its activation of three high-affinity G-protein-coupled receptors called LPA1, LPA2, and LPA3...

 (LPA).

Function

The integral membrane protein encoded by this gene is a lysophosphatidic acid (LPA) receptor from a group known as EDG receptors. These receptors are members of the G protein-coupled receptor superfamily. Utilized by LPA for cell signaling, EDG receptors mediate diverse biologic functions, including proliferation, platelet aggregation, smooth muscle contraction, inhibition of neuroblastoma cell differentiation, chemotaxis, and tumor cell invasion. Alternative splicing of this gene has been observed and two transcript variants have been described, each encoding identical proteins. An alternate translation start codon has been identified, which results in isoforms differing in the N-terminal extracellular tail. In addition, an alternate polyadenylation site has been reported.

External links

The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK