Ecological interface design
Encyclopedia
Ecological interface design (EID) is an approach to interface
design that was introduced specifically for complex sociotechnical, real-time, and dynamic systems. It has been applied in a variety of domains including process control
(e.g. nuclear power plant
s, petrochemical plants), aviation
, and medicine
.
EID differs from some interface design methodologies like User-Centered Design (UCD)
in that the focus of the analysis is on the work domain or environment, rather than on the end user or a specific task.
The goal of EID is to make constraints and complex relationships in the work environment perceptually evident (e.g. visible, audible) to the user. This allows more of users' cognitive resources to be devoted to higher cognitive processes such as problem solving and decision making. EID is based on two key concepts from cognitive engineering research: the Abstraction Hierarchy (AH) and the Skills, Rules, Knowledge (SRK) framework.
By reducing mental workload and supporting knowledge-based reasoning, EID aims to improve user performance and overall system reliability for both anticipated and unanticipated events in a complex system.
, Andrew Scott and Jens Rasmussen in the late 80s and early 90s following extensive research into human-system reliability
at the Risø National Laboratory
in Denmark (Rasmussen & Vicente et al, 1989; Vicente, 2001). The term ecological in EID originates from a school of psychology developed by James J. Gibson
known as ecological psychology
. This field of psychology focuses on human-environment relationships, in particular in relation to human perception in actual environments rather than in laboratory environments. EID borrows from ecological psychology in that the constraints and relationships of the work environment in a complex system are reflected perceptually (through an interface) in order to shape user behaviour. In order to develop ecological designs, analytical tools developed earlier by researchers at the Risø National Laboratory were adopted, including the Abstraction Hierarchy (AH) and the Skills, Rules, Knowledge (SRK) framework. The EID framework was first applied and evaluated in nuclear power plant systems (Vicente & Rasmussen, 1990, 1992). Scott defined the first model for Ecological design strategies in mainstream industrial interface design in a conference held in Københavns Universitet (University of Copenhagen) in 2000. To date, EID has been applied in a variety of complex systems including computer network management, anaesthesiology, military command and control, and aircraft (Vicente, 2002; Burns & Hajdukiewicz, 2004).
In addition to providing operators with the means to successfully manage unanticipated events, EID is also proposed for systems that require users to become experts (Burns & Hajdukiewicz, 2004). Through the use of the Abstraction Hierarchy (AH) and the Skills, Rules, Knowledge (SRK) framework, EID enables novice users to more easily acquire advanced mental model
s that generally take many years of experience and training to develop. Likewise, EID provides a basis for continuous learning and distributed, collaborative work (Vicente, 1999b). When faced with complex sociotechnical systems, it is not always possible for designers to ask operators what kinds of information they would like to see since each person understands the system at a different level (but rarely fully) and will provide very different answers. The EID framework allows designers to determine what kinds of information are required when it is not possible or feasible to ask users (Burns & Hajdukiewicz, 2004). It is not the intention of EID to replace existing design methodologies such as UCD and task analysis
, but to complement them.
1. That Interface Design is a field on its own because it bridges between humans and the program/environment.
2. That an understanding of human perception, cognition, and behavior is critical to designing interfaces.
3. That much can be learned by getting feedback from the actual users of the interface, at the early design stages, and then testing through various points in the design (Burns & Hajdukiewicz, 2004)
But there are some problems in this approach as well.
Furthermore, the users are not always aware of the constraints that affect the system that they work with, and discovering these constraints can take some extra effort (Burns & Hajdukiewicz, 2004). EID incorporates this constraint based style in the design approach where it examines the constraints of the user domain before getting user input. EID focuses on understanding the complex system – its build, its architecture, and its original intent and then relaying this information to the end user thereby reducing their learning curve and helping them achieve higher level of expertise.
The constraint based style in interface design also facilitates the handling of unanticipated events because, regardless of the event, the constraint is broken and it can be seen by the user who in turn can proactively work with the interface to restore the constrain and fix the system.
This does not in any way take away the usefulness of UCD but stresses the fact that that EID offers some unique insight into the design process and it could be used in conjunction with other cognitive engineering techniques to enhance the user interfaces and increase human reliability in human-machine interactions.
Each level in the AH is a complete but unique description of the work domain.
might be to cool food to a certain temperature while using a minimal amount of electricity.
in a social system, or even economic principles
in a commercial system. In general, the laws and principles focus on things that need to be conserved or that flow through the system such as mass (Burns & Hajdukiewicz, 2004). The operation of the refrigerator (as a heat pump
) is governed by the second law of thermodynamics
.
that can exert a certain maximum pressure on the cooling medium.
As the systems get more and more complex, we need to follow the flow structure as well as to understand how the system works. This is when a causal Abstraction Hierarchy representation becomes necessary. As the flow patterns become increasingly complex and it becomes increasingly difficult to derive the flows directly from the system diagram, we add causal models to the functional models.
The causal models help to detail the flow structure and understand more complex flow patterns within a specified Abstraction Hierarchy level. A causal Abstraction Hierarchy representation has the same structure as a functional Abstraction Hierarchy representation but with causal links drawn. Causal links are also known as “within the level” links. These links show how the processes and flows are connected within each level.
The two representations are closely related but are usually developed separately because doing so results in a clearer model which captures most of the system constraints.
In very elaborate flow systems causal models can be used to simplify or abstract the flows. In such a scenario we may find it easier to identify the main feed and product lines at first, then control lines, emergency supply lines, or emergency shunting lines (Burns & Hajdukiewicz, 2004). Causal links are most useful at the Generalized Function and the Abstract Function levels which show flows of materials, processes, mass, or energy.
allows operators to free up cognitive resources, which can then be used for higher cognitive functions like problem solving (Wickens & Hollands, 2000).
Operators are not required to know the underlying principles of a system, to perform a rule-based control. For example, hospitals have highly-proceduralised instructions for fire emergencies. Therefore, when one sees a fire, one can follow the necessary steps to ensure the safety of the patients without any knowledge of fire behaviour.
User interface
The user interface, in the industrial design field of human–machine interaction, is the space where interaction between humans and machines occurs. The goal of interaction between a human and a machine at the user interface is effective operation and control of the machine, and feedback from the...
design that was introduced specifically for complex sociotechnical, real-time, and dynamic systems. It has been applied in a variety of domains including process control
Process control
Process control is a statistics and engineering discipline that deals with architectures, mechanisms and algorithms for maintaining the output of a specific process within a desired range...
(e.g. nuclear power plant
Nuclear power plant
A nuclear power plant is a thermal power station in which the heat source is one or more nuclear reactors. As in a conventional thermal power station the heat is used to generate steam which drives a steam turbine connected to a generator which produces electricity.Nuclear power plants are usually...
s, petrochemical plants), aviation
Aviation
Aviation is the design, development, production, operation, and use of aircraft, especially heavier-than-air aircraft. Aviation is derived from avis, the Latin word for bird.-History:...
, and medicine
Medicine
Medicine is the science and art of healing. It encompasses a variety of health care practices evolved to maintain and restore health by the prevention and treatment of illness....
.
EID differs from some interface design methodologies like User-Centered Design (UCD)
User-centered design
In broad terms, user-centered design or pervasive usability is a design philosophy and a process in which the needs, wants, and limitations of end users of a product are given extensive attention at each stage of the design process...
in that the focus of the analysis is on the work domain or environment, rather than on the end user or a specific task.
The goal of EID is to make constraints and complex relationships in the work environment perceptually evident (e.g. visible, audible) to the user. This allows more of users' cognitive resources to be devoted to higher cognitive processes such as problem solving and decision making. EID is based on two key concepts from cognitive engineering research: the Abstraction Hierarchy (AH) and the Skills, Rules, Knowledge (SRK) framework.
By reducing mental workload and supporting knowledge-based reasoning, EID aims to improve user performance and overall system reliability for both anticipated and unanticipated events in a complex system.
Origin and history of EID
Ecological interface design was proposed as a framework for interface design by Kim VicenteKim Vicente
Kim Vicente is a professor of Mechanical and Industrial Engineering at the University of Toronto. He is researcher, teacher, and author in the field of human factors. He is best known for his two books: The Human Factor and Cognitive Work Analysis....
, Andrew Scott and Jens Rasmussen in the late 80s and early 90s following extensive research into human-system reliability
Human reliability
Human reliability is related to the field of human factors engineering and ergonomics, and refers to the reliability of humans in fields such as manufacturing, transportation, the military, or medicine...
at the Risø National Laboratory
Risø National Laboratory
Risø DTU National Laboratory for Sustainable Energy is a scientific research organization north of Roskilde, Denmark. From 1 January 2008 it was made an institute under Technical University of Denmark...
in Denmark (Rasmussen & Vicente et al, 1989; Vicente, 2001). The term ecological in EID originates from a school of psychology developed by James J. Gibson
J. J. Gibson
James Jerome Gibson , was an American psychologist, born in McConnelsville, Ohio, who received his Ph.D. from Princeton University's Department of Psychology, and is considered one of the most important 20th century psychologists in the field of visual perception...
known as ecological psychology
Ecological psychology
Ecological psychology is a term claimed by a number of schools of psychology. However, the two main ones are one on the writings of James J. Gibson, and another on the work of Roger G. Barker, Herb Wright and associates at the University of Kansas in Lawrence...
. This field of psychology focuses on human-environment relationships, in particular in relation to human perception in actual environments rather than in laboratory environments. EID borrows from ecological psychology in that the constraints and relationships of the work environment in a complex system are reflected perceptually (through an interface) in order to shape user behaviour. In order to develop ecological designs, analytical tools developed earlier by researchers at the Risø National Laboratory were adopted, including the Abstraction Hierarchy (AH) and the Skills, Rules, Knowledge (SRK) framework. The EID framework was first applied and evaluated in nuclear power plant systems (Vicente & Rasmussen, 1990, 1992). Scott defined the first model for Ecological design strategies in mainstream industrial interface design in a conference held in Københavns Universitet (University of Copenhagen) in 2000. To date, EID has been applied in a variety of complex systems including computer network management, anaesthesiology, military command and control, and aircraft (Vicente, 2002; Burns & Hajdukiewicz, 2004).
Motivation
Rapid advances in technologies along with economic demands have led to a noticeable increase in the complexity of engineering systems (Vicente, 1999a). As a result, it is becoming more and more difficult for designers to anticipate events that may occur within such systems. Unanticipated events by definition cannot be specified in advance and thus cannot be prevented through training, procedures, or automation. A complex sociotechnical system designed based solely on known scenarios frequently loses the flexibility to support unforeseen events. System safety is often compromised by the operators’ inability to adapt to new and unfamiliar situations (Vicente & Rasmussen, 1992). Ecological interface design attempts to provide the operators with the necessary tools and information to become active problem solvers as opposed to passive monitors, particularly during the development of unforeseen events. Interfaces designed following the EID framework aim to lessen mental workload when dealing with unfamiliar and unanticipated events, which are attributed to increased psychological pressure (Vicente, 1999b). In doing so, cognitive resources may be freed up to support efficient problem solving.In addition to providing operators with the means to successfully manage unanticipated events, EID is also proposed for systems that require users to become experts (Burns & Hajdukiewicz, 2004). Through the use of the Abstraction Hierarchy (AH) and the Skills, Rules, Knowledge (SRK) framework, EID enables novice users to more easily acquire advanced mental model
Mental model
A mental model is an explanation of someone's thought process about how something works in the real world. It is a representation of the surrounding world, the relationships between its various parts and a person's intuitive perception about his or her own acts and their consequences...
s that generally take many years of experience and training to develop. Likewise, EID provides a basis for continuous learning and distributed, collaborative work (Vicente, 1999b). When faced with complex sociotechnical systems, it is not always possible for designers to ask operators what kinds of information they would like to see since each person understands the system at a different level (but rarely fully) and will provide very different answers. The EID framework allows designers to determine what kinds of information are required when it is not possible or feasible to ask users (Burns & Hajdukiewicz, 2004). It is not the intention of EID to replace existing design methodologies such as UCD and task analysis
Task analysis
Task analysis is the analysis of how a task is accomplished, including a detailed description of both manual and mental activities, task and element durations, task frequency, task allocation, task complexity, environmental conditions, necessary clothing and equipment, and any other unique factors...
, but to complement them.
UCD and EID: Why use EID at all?
As we can see from today’s windows based interfaces User-Centered Design (UCD) has done an excellent job of identifying user preferences and limitations and incorporating them into the interfaces. In the pre-UCD era, interface design was almost an afterthought to a program and was completely dependent on the programmers while totally neglecting the end user.Benefits of UCD
UCD adds three key ideas:1. That Interface Design is a field on its own because it bridges between humans and the program/environment.
2. That an understanding of human perception, cognition, and behavior is critical to designing interfaces.
3. That much can be learned by getting feedback from the actual users of the interface, at the early design stages, and then testing through various points in the design (Burns & Hajdukiewicz, 2004)
But there are some problems in this approach as well.
How is EID relevant?
The UCD approach commonly focuses on single user interactions between the user and the interface which is not enough to deal with today’s increasingly complex systems where centralized control of information is needed and it is displayed on a variety of interfaces in varying detail. EID is a preferable addition to the complex systems’ design process when even very experienced users do not have a complete understanding of how the entire complex system (power plant, nuclear plant, petrochemical refinery etc.) works. It is a known fact that users don’t always understand or even feel the need to understand all the relationships behind the complex processes that they control via their interfaces.Furthermore, the users are not always aware of the constraints that affect the system that they work with, and discovering these constraints can take some extra effort (Burns & Hajdukiewicz, 2004). EID incorporates this constraint based style in the design approach where it examines the constraints of the user domain before getting user input. EID focuses on understanding the complex system – its build, its architecture, and its original intent and then relaying this information to the end user thereby reducing their learning curve and helping them achieve higher level of expertise.
The constraint based style in interface design also facilitates the handling of unanticipated events because, regardless of the event, the constraint is broken and it can be seen by the user who in turn can proactively work with the interface to restore the constrain and fix the system.
This does not in any way take away the usefulness of UCD but stresses the fact that that EID offers some unique insight into the design process and it could be used in conjunction with other cognitive engineering techniques to enhance the user interfaces and increase human reliability in human-machine interactions.
The Abstraction Hierarchy (AH)
The Abstraction Hierarchy (AH) is a 5-level functional decomposition used for modelling the work environment, or more commonly referred to as the work domain, for complex sociotechnical systems (Rasmussen, 1985). In the EID framework, the AH is used to determine what kinds of information should be displayed on the system interface and how the information should be arranged. The AH describes a system at different levels of abstraction using how and why relationships. Moving down the model levels answers how certain elements in the system are achieved, whereas moving up reveals why certain elements exist. Elements at highest level of the model define the purposes and goals of the system. Elements at the lowest levels of the model indicate and describe the physical components (i.e. equipment) of the system. The how and why relationships are shown on the AH as means-ends links. An AH is typically developed following a systematic approach known as a Work Domain Analysis (Vicente, 1999a). It is not uncommon for a Work Domain Analysis to yield multiple AH models; each examining the system at a different level of physical detail defined using another model called the Part-Whole Hierarchy (Burns & Hajdukiewicz, 2004).Each level in the AH is a complete but unique description of the work domain.
Functional Purpose
The Functional Purpose (FP) level describes the goals and purposes of the system. An AH typically includes more than one system goal such that the goals conflict or complement each other (Burns & Hajdukiewicz, 2004). The relationships between the goals indicate potential trade-offs and constraints within the work domain of the system. For example, the goals of a refrigeratorRefrigerator
A refrigerator is a common household appliance that consists of a thermally insulated compartment and a heat pump that transfers heat from the inside of the fridge to its external environment so that the inside of the fridge is cooled to a temperature below the ambient temperature of the room...
might be to cool food to a certain temperature while using a minimal amount of electricity.
Abstract Function
The Abstract Function (AF) level describes the underlying laws and principles that govern the goals of the system. These may be empirical laws in a physical system, judicial lawsLaw
Law is a system of rules and guidelines which are enforced through social institutions to govern behavior, wherever possible. It shapes politics, economics and society in numerous ways and serves as a social mediator of relations between people. Contract law regulates everything from buying a bus...
in a social system, or even economic principles
Economics
Economics is the social science that analyzes the production, distribution, and consumption of goods and services. The term economics comes from the Ancient Greek from + , hence "rules of the house"...
in a commercial system. In general, the laws and principles focus on things that need to be conserved or that flow through the system such as mass (Burns & Hajdukiewicz, 2004). The operation of the refrigerator (as a heat pump
Heat pump
A heat pump is a machine or device that effectively "moves" thermal energy from one location called the "source," which is at a lower temperature, to another location called the "sink" or "heat sink", which is at a higher temperature. An air conditioner is a particular type of heat pump, but the...
) is governed by the second law of thermodynamics
Second law of thermodynamics
The second law of thermodynamics is an expression of the tendency that over time, differences in temperature, pressure, and chemical potential equilibrate in an isolated physical system. From the state of thermodynamic equilibrium, the law deduced the principle of the increase of entropy and...
.
Generalised Function
The Generalised Function (GF) level explains the processes involved in the laws and principles found at the AF level, i.e. how each abstract function is achieved. Causal relationships exist between the elements found at the GF level. The refrigeration cycle in a refrigerator involves pumping heat from an area of low temperature (source) into an area of higher temperature (sink).Physical Function
The Physical Function (PFn) level reveals the physical components or equipment associated with the processes identified at the GF level. The capabilities and limitations of the components such as maximum capacity are also usually noted in the AH (Burns & Hajdukiewicz, 2004). A refrigerator may consist of heat exchange pipes and a gas compressorGas compressor
A gas compressor is a mechanical device that increases the pressure of a gas by reducing its volume.Compressors are similar to pumps: both increase the pressure on a fluid and both can transport the fluid through a pipe. As gases are compressible, the compressor also reduces the volume of a gas...
that can exert a certain maximum pressure on the cooling medium.
Physical Form
The Physical Form (PFo) level describes the condition, location, and physical appearance of the components shown at the PFn level. In the refrigerator example, the heat exchange pipes and the gas compressor are arranged in a specific manner, basically illustrating the location of the components. Physical characteristics may include things as colour, dimensions, and shape.Causal Abstraction Hierarchy
The hierarchy described before is a functional Abstraction Hierarchy representation. A functional Abstraction Hierarchy emphasizes the “means-ends” or “how/why” links of the hierarchy. These connections are direct and illustrated across the five levels of the Abstraction Hierarchy.As the systems get more and more complex, we need to follow the flow structure as well as to understand how the system works. This is when a causal Abstraction Hierarchy representation becomes necessary. As the flow patterns become increasingly complex and it becomes increasingly difficult to derive the flows directly from the system diagram, we add causal models to the functional models.
The causal models help to detail the flow structure and understand more complex flow patterns within a specified Abstraction Hierarchy level. A causal Abstraction Hierarchy representation has the same structure as a functional Abstraction Hierarchy representation but with causal links drawn. Causal links are also known as “within the level” links. These links show how the processes and flows are connected within each level.
The two representations are closely related but are usually developed separately because doing so results in a clearer model which captures most of the system constraints.
In very elaborate flow systems causal models can be used to simplify or abstract the flows. In such a scenario we may find it easier to identify the main feed and product lines at first, then control lines, emergency supply lines, or emergency shunting lines (Burns & Hajdukiewicz, 2004). Causal links are most useful at the Generalized Function and the Abstract Function levels which show flows of materials, processes, mass, or energy.
The Skills, Rules, Knowledge (SRK) framework
The Skills, Rules, Knowledge (SRK) framework or SRK taxonomy defines three types of behaviour or psychological processes present in operator information processing (Vicente, 1999a). The SRK framework was developed by Rasmussen (1983) to help designers combine information requirements for a system and aspects of human cognition. In EID, the SRK framework is used to determine how information should be displayed to take advantage of human perception and psychomotor abilities (Vicente, 1999b). By supporting skill- and rule-based behaviours in familiar tasks, more cognitive resources may be devoted to knowledge-based behaviours, which are important for managing unanticipated events. The three categories essentially describe the possible ways in which information, for example, from a human-machine interface is extracted and understood:Skill-based level
A skill-based behaviour represents a type of behaviour that requires very little or no conscious control to perform or execute an action once an intention is formed; also known as a sensorimotor behaviour. Performance is smooth, automated, and consists of highly integrated patterns of behaviour in most skill-based control (Rasmussen, 1990). For example, bicycle riding is considered a skill-based behaviour in which very little attention is required for control once the skill is acquired. This automaticityAutomaticity
Automaticity is the ability to do things without occupying the mind with the low-level details required, allowing it to become an automatic response pattern or habit. It is usually the result of learning, repetition, and practice....
allows operators to free up cognitive resources, which can then be used for higher cognitive functions like problem solving (Wickens & Hollands, 2000).
Rule-based level
A rule-based behaviour is characterised by the use of rules and procedures to select a course of action in a familiar work situation (Rasmussen, 1990). The rules can be a set of instructions acquired by the operator through experience or given by supervisors and former operators.Operators are not required to know the underlying principles of a system, to perform a rule-based control. For example, hospitals have highly-proceduralised instructions for fire emergencies. Therefore, when one sees a fire, one can follow the necessary steps to ensure the safety of the patients without any knowledge of fire behaviour.
Knowledge-based level
A knowledge-based behaviour represents a more advanced level of reasoning (Wirstad, 1988). This type of control must be employed when the situation is novel and unexpected. Operators are required to know the fundamental principles and laws by which the system is governed. Since operators need to form explicit goals based on their current analysis of the system, cognitive workload is typically greater than when using skill- or rule-based behaviours.See also
- CognitionCognitionIn science, cognition refers to mental processes. These processes include attention, remembering, producing and understanding language, solving problems, and making decisions. Cognition is studied in various disciplines such as psychology, philosophy, linguistics, and computer science...
and applied psychologyApplied psychologyThe basic premise of applied psychology is the use of psychological principles and theories to overcome problems in other areas, such as mental health, business management, education, health, product design, ergonomics, and law... - Ecological psychologyEcological psychologyEcological psychology is a term claimed by a number of schools of psychology. However, the two main ones are one on the writings of James J. Gibson, and another on the work of Roger G. Barker, Herb Wright and associates at the University of Kansas in Lawrence...
- Human factorsHuman factorsHuman factors science or human factors technologies is a multidisciplinary field incorporating contributions from psychology, engineering, industrial design, statistics, operations research and anthropometry...
and ergonomicsErgonomicsErgonomics is the study of designing equipment and devices that fit the human body, its movements, and its cognitive abilities.The International Ergonomics Association defines ergonomics as follows:... - Human-Machine InterfaceHuman-machine interfaceHuman-machine interface is the part of the machine that handles the Human-machine interaction- Overview :In complex systems, the human-machine interface is typically computerized. The term Human-computer interface refers to this kind of systems....
- UsabilityUsabilityUsability is the ease of use and learnability of a human-made object. The object of use can be a software application, website, book, tool, machine, process, or anything a human interacts with. A usability study may be conducted as a primary job function by a usability analyst or as a secondary job...
- The Language of Interface Design
Institutions and organisations
- Advanced Interface Design Lab (AIDL), University of Waterloo
- Cognitive Engineering Lab (CEL), University of Toronto
- Cognitive Engineering Research Group (CERG), University of Queensland
- Human Factors and Ergonomics Society
- IEEE Systems, Man and Cybernetics Society