Electron wake
Encyclopedia
Electron wake is the disturbance left after a high-energy charged particle
passes
through condensed matter or plasma. Ions passing through can introduce periodic oscillations in the crystal lattice or plasma wave with the characteristic frequency of the crystal or plasma frequency. Interactions of the field created by these oscillations with the charged particle field alternate from constructive interference to destructive interference, producing alternating waves of electric field and displacement. The frequency of the wake field is determined by the nature of the penetrated matter, and the period of the wake field is directly proportional to the speed of the incoming charged particle. The amplitude of the first wake wave is the most important, as it produces a braking force on the charged particle, eventually slowing it down. Wake fields also can capture and guide light ions or positrons in the direction perpendicular to the wake. The larger the speed of the original charged particle, the larger the angle between the initial particle's velocity and the captured ion's velocity.
Charged particle
In physics, a charged particle is a particle with an electric charge. It may be either a subatomic particle or an ion. A collection of charged particles, or even a gas containing a proportion of charged particles, is called a plasma, which is called the fourth state of matter because its...
passes
through condensed matter or plasma. Ions passing through can introduce periodic oscillations in the crystal lattice or plasma wave with the characteristic frequency of the crystal or plasma frequency. Interactions of the field created by these oscillations with the charged particle field alternate from constructive interference to destructive interference, producing alternating waves of electric field and displacement. The frequency of the wake field is determined by the nature of the penetrated matter, and the period of the wake field is directly proportional to the speed of the incoming charged particle. The amplitude of the first wake wave is the most important, as it produces a braking force on the charged particle, eventually slowing it down. Wake fields also can capture and guide light ions or positrons in the direction perpendicular to the wake. The larger the speed of the original charged particle, the larger the angle between the initial particle's velocity and the captured ion's velocity.
See also
- Coulomb explosionCoulomb explosionA Coulomb explosion is a mechanism for coupling electronic excitation energy from intense electromagnetic fields into atomic motion. The atomic motion can break the bonds that hold solids together...
- Charged particle beamCharged particle beamA charged particle beam is a spatially localized group of electrically charged particles that have approximately the same velocity . The kinetic energies of the particles are typically measured in keV or MeV, much larger than the energies of particles at ambient temperature...
- Wake fields
- Plasma accelerationPlasma accelerationPlasma Wakefield acceleration is a technique for accelerating charged particles, such as electrons, positrons and ions, using an electric field associated with an electron plasma wave. The wave is created either using electron pulses or through the passage of a very brief laser pulses, a technique...
- BremsstrahlungBremsstrahlungBremsstrahlung is electromagnetic radiation produced by the deceleration of a charged particle when deflected by another charged particle, typically an electron by an atomic nucleus. The moving particle loses kinetic energy, which is converted into a photon because energy is conserved. The term is...