Environmental implications of nanotechnology
Encyclopedia
The environmental impact of nanotechnology
Nanotechnology
Nanotechnology is the study of manipulating matter on an atomic and molecular scale. Generally, nanotechnology deals with developing materials, devices, or other structures possessing at least one dimension sized from 1 to 100 nanometres...

are the possible effects that the use of nanotechnological materials and devices will have on the environment
Environment (biophysical)
The biophysical environment is the combined modeling of the physical environment and the biological life forms within the environment, and includes all variables, parameters as well as conditions and modes inside the Earth's biosphere. The biophysical environment can be divided into two categories:...

. As nanotechnology is an emerging field, there is great debate regarding to what extent industrial and commercial use of nanomaterials
Nanomaterials
Nanomaterials is a field that takes a materials science-based approach to nanotechnology. It studies materials with morphological features on the nanoscale, and especially those that have special properties stemming from their nanoscale dimensions...

 will affect organisms and ecosystems.

Nanotechnology's environmental impact can be split into two aspects: the potential for nanotechnologcal innovations to help improve the environment, and the possibly novel type of pollution that nanotechnological materials might cause if released into the environment.

Nanopollution

Nanopollution is a generic name for all waste generated by nanodevices or during the nanomaterials manufacturing process. This kind of waste may be very dangerous because of its size. It can float in the air and might easily penetrate animal and plant cells causing unknown effects. Most human-made nanoparticle
Nanoparticle
In nanotechnology, a particle is defined as a small object that behaves as a whole unit in terms of its transport and properties. Particles are further classified according to size : in terms of diameter, coarse particles cover a range between 10,000 and 2,500 nanometers. Fine particles are sized...

s do not appear in nature, so living organisms may not have appropriate means to deal with nanowaste. It is probably one great challenge to nanotechnology
Nanotechnology
Nanotechnology is the study of manipulating matter on an atomic and molecular scale. Generally, nanotechnology deals with developing materials, devices, or other structures possessing at least one dimension sized from 1 to 100 nanometres...

: how to deal with its nanopollutants and nanowaste.

Environmental assessment
Environmental impact assessment
An environmental impact assessment is an assessment of the possible positive or negative impact that a proposed project may have on the environment, together consisting of the natural, social and economic aspects....

 is justified as nanoparticles present novel (new) environmental impacts. Scrinis
raises concerns about nano-pollution, and argues that it is not currently possible to “precisely predict or control the ecological impacts of the release of these nano-products into the environment.” Ecotoxicological impacts of nanoparticles and the potential for bioaccumulation
Bioaccumulation
Bioaccumulation refers to the accumulation of substances, such as pesticides, or other organic chemicals in an organism. Bioaccumulation occurs when an organism absorbs a toxic substance at a rate greater than that at which the substance is lost...

 in plants and microorganisms remain under-researched. The capacity for nanoparticles to function as a transport mechanism also raises concern about the transport of heavy metals and other environmental contaminants. A May 2007 Report to the UK Department for Environment, Food and Rural Affairs noted concerns about the toxicological impacts of nanoparticles in relation to both hazard and exposure. The report recommended comprehensive toxicological testing and independent performance tests of fuel additives.

Not enough data exists to know for sure if nanoparticles could have undesirable effects on the environment. Two areas are relevant here: (1) In free form nanoparticles can be released in the air or water during production (or production accidents) or as waste by-product of production, and ultimately accumulate in the soil, water or plant life. (2) In fixed form, where they are part of a manufactured substance or product, they will ultimately have to be recycled or disposed of as waste. It is not known yet whether certain nanoparticles will constitute a completely new class of non-biodegradable pollutant. In case they do, it is not known how such pollutants could be removed from air or water because most traditional filters are not suitable for such tasks (their pores are too big to catch nanoparticles).

Of the US$710 million spent in 2002 by the U.S. government on nanotechnology research, only $500,000 was spent on environmental impact assessments. Risks identified by Uskokovic (2007) include: self-replicating nanobot
Nanorobotics
Nanorobotics is the emerging technology field of creating machines or robots whose components are at or close to the scale of a nanometer . More specifically, nanorobotics refers to the nanotechnology engineering discipline of designing and building nanorobots, with devices ranging in size from...

s aggressively or through slowly rising supremacy wiping out the whole biosphere; further destabilising the already endangered diversity of the biosphere.

Concerns have been raised about Silver Nano
Silver Nano
Silver Nano is a trademark name of an antibacterial technology which uses silver nanoparticles in washing machines, refrigerators, air conditioners, air purifiers and vacuum cleaners introduced by Samsung in April 2003....

 technology used by Samsung
Samsung
The Samsung Group is a South Korean multinational conglomerate corporation headquartered in Samsung Town, Seoul, South Korea...

 in a range of appliances such as washing machines and air purifiers.

Life cycle responsibility

To properly assess the health hazards of engineered nanoparticles the whole life cycle of these particles needs to be evaluated, including their fabrication, storage and distribution, application and potential abuse, and disposal. The impact on humans or the environment may vary at different stages of the life cycle.

The Royal Society report identified a risk of nanoparticles or nanotubes being released during disposal, destruction and recycling, and recommended that “manufacturers of products that fall under extended producer responsibility regimes such as end-of-life regulations publish procedures outlining how these materials will be managed to minimize possible human and environmental exposure” (p.xiii). Reflecting the challenges for ensuring responsible life cycle regulation, the Institute for Food and Agricultural Standards has proposed standards for nanotechnology research and development should be integrated across consumer, worker and environmental standards. They also propose that NGO
Non-governmental organization
A non-governmental organization is a legally constituted organization created by natural or legal persons that operates independently from any government. The term originated from the United Nations , and is normally used to refer to organizations that do not form part of the government and are...

s and other citizen groups play a meaningful role in the development of these standards.

Energy

Nanotechnology could potentially have a great impact on clean energy production. Research is underway to use nanomaterials for purposes including more efficient solar cell
Solar cell
A solar cell is a solid state electrical device that converts the energy of light directly into electricity by the photovoltaic effect....

s, practical fuel cell
Fuel cell
A fuel cell is a device that converts the chemical energy from a fuel into electricity through a chemical reaction with oxygen or another oxidizing agent. Hydrogen is the most common fuel, but hydrocarbons such as natural gas and alcohols like methanol are sometimes used...

s, and environmentally friendly batteries
Nanobatteries
Nanobatteries are fabricated batteries employing technology at the nanoscale, a scale of minuscule particles that measure less than 100 nanometers or 100x10−9 meters...

. The most advanced nanotechnology projects related to energy are: storage, conversion, manufacturing improvements by reducing materials and process rates, energy saving (by better thermal insulation for example), and enhanced renewable energy sources.

Current commercially available solar cells have low efficiencies of 15-20%. Research is ongoing to use nanowires and other nanostructured materials with the hope of to create cheaper and more efficient solar cell
Solar cell
A solar cell is a solid state electrical device that converts the energy of light directly into electricity by the photovoltaic effect....

s than are possible with conventional planar silicon solar cells. It is believed that these nanoelectronics
Nanoelectronics
Nanoelectronics refer to the use of nanotechnology on electronic components, especially transistors. Although the term nanotechnology is generally defined as utilizing technology less than 100 nm in size, nanoelectronics often refer to transistor devices that are so small that inter-atomic...

-based devices will enable more efficient solar cells, and would have a great effect on satisfying global energy needs.

Another example for an environmentally friendly form of energy is the use of fuel cells powered by hydrogen. Probably the most prominent nanostructured material in fuel cells is the catalyst consisting of carbon supported noble metal particles with diameters of 1-5 nm. Suitable materials for hydrogen storage contain a large number of small nanosized pores.

Nanotechnology may also find applications in batteries
Nanobatteries
Nanobatteries are fabricated batteries employing technology at the nanoscale, a scale of minuscule particles that measure less than 100 nanometers or 100x10−9 meters...

. Because of the relatively low energy density of conventional batteries the operating time is limited and a replacement or recharging is needed, and the huge number of spent batteries represent a disposal problem. The use of nanomaterials
Nanomaterials
Nanomaterials is a field that takes a materials science-based approach to nanotechnology. It studies materials with morphological features on the nanoscale, and especially those that have special properties stemming from their nanoscale dimensions...

 may enable batteries with higher energy content or supercapacitors with a higher rate of recharging, which could be helpful for the battery disposal problem.

Water filtration and remediation

A strong influence of nanochemistry on waste-water treatment, air purification and energy storage devices is to be expected.

Mechanical or chemical methods can be used for effective filtration techniques. One class of filtration techniques is based on the use of membranes with suitable hole sizes, whereby the liquid is pressed through the membrane. Nanoporous membranes are suitable for a mechanical filtration with extremely small pores smaller than 10 nm (“nanofiltration”) and may be composed of nanotubes
Nanotube membrane
Nanotube membrane is either a single, open-ended nanotube or a film composed of open-ended nanotubes that are oriented perpendicularly to the surface of an impermeable film matrix like the cells of a honeycomb. 'Impermeable' is essential here to distinguish nanotube membrane with traditional, well...

. Nanofiltration is mainly used for the removal of ions or the separation of different fluids.

Magnetic nanoparticles offer an effective and reliable method to remove heavy metal contaminants from waste water by making use of magnetic separation techniques. Using nanoscale particles increases the efficiency to absorb the contaminants and is comparatively inexpensive compared to traditional precipitation and filtration methods.

Some water-treatment devices incorporating nanotechnology are already on the market, with more in development. Low-cost nanostructured separation membranes methods have been shown to be effective in producing potable water in a recent study.

Nanoscale iron particles
Nanoscale iron particles
Nanoscale iron particles are sub-micrometer particles of iron metal. They are highly reactive because of their large surface area. In the presence of oxygen and water, they rapidly oxidize to form free iron ions...

 have also shown potential as a detoxifying agent for cleaning environmental contaminents from brownfield sites.

External links

The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK