Full Cycle
Encyclopedia
A full cycle is a mathematical term that represents a traversal over a set of non-random numbers. A full cycle implies that every number in the set was chosen exactly once before repeating.

Full cycles are useful in Pseudorandom number generators.

Example 1 (in C++)

Given a random number seed that is greater or equal to zero.
Given a total sample size greater than 1.
Given a prime number that cannot be evenly divided into the total sample size.

A full cycle can be generated with the following logic. Each number in the sample_size should occur once.


unsigned int random_seed = 0;
unsigned int sample_size = 3000;
unsigned int generated_number = random_seed % sample_size;
unsigned int prime_number = 7;
unsigned int increment = prime_number;
for(unsigned int iterator = 0; iterator < sample_size; ++iterator)
{
generated_number = (generated_number + increment) % sample_size;
}

Example 2 (in C++)


// PseudoRandomTest1.cpp : Defines the entry point for the console application.
  1. include "stdafx.h"


int main(int argc, char* argv[])
{
unsigned int random_seed = 0;
const unsigned int sample_size = 3000;
unsigned int generated_number = random_seed % sample_size;
unsigned int prime_number = 1;
unsigned int increment = prime_number;

bool test[sample_size] = {0};

for(unsigned int iterator = 0; iterator < sample_size; ++iterator)
{
generated_number = (generated_number + increment) % sample_size;
test[generated_number] = true;

static bool displayOnce = true;
if (displayOnce)
{
printf("Predicable Random Numbers:\n");
displayOnce = false;
}

printf("%d ", generated_number);
}

for(unsigned int iterator = 0; iterator < sample_size; ++iterator)
{
if (!test[iterator])
{
static bool displayOnce = true;
if (displayOnce)
{
printf("\nYou must have not used a prime number [ERROR]\n");
displayOnce = false;
}
printf("%d ", iterator);
}
}
}

Example 2 (in C#)


using System;
using System.Collections.Generic;
using System.Text;

namespace PseudoRandomTest1
{
class Program
{
static Boolean m_DisplayOnce = false;

static void Main(string[] args)
{
const UInt32 random_seed = 0;
const UInt32 sample_size = 3000;
UInt32 generated_number = random_seed % sample_size;
const UInt32 prime_number = 751;
const UInt32 increment = prime_number;

Boolean[] test = new Boolean[sample_size];

m_DisplayOnce = true;
for(UInt32 iterator = 0; iterator < sample_size; ++iterator)
{
generated_number = (generated_number + increment) % sample_size;
test[generated_number] = true;

if (m_DisplayOnce)
{
Console.WriteLine("Predicable Random Numbers:");
m_DisplayOnce = false;
}

Console.Write("{0} ", generated_number);
}

m_DisplayOnce = true;
for(UInt32 iterator = 0; iterator < sample_size; ++iterator)
{
if (!test[iterator])
{
if (m_DisplayOnce)
{
Console.WriteLine;
Console.WriteLine("You must have not used a prime number [ERROR]");
m_DisplayOnce = false;
}
Console.Write("{0} ", iterator);
}
}
}
}
}

See also

  • Linear congruential generator
    Linear congruential generator
    A Linear Congruential Generator represents one of the oldest and best-known pseudorandom number generator algorithms. The theory behind them is easy to understand, and they are easily implemented and fast....

  • Prime numbers
  • Lists of Prime Numbers
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK