Functional fixedness
Encyclopedia
Functional fixedness is a cognitive bias
that limits a person to using an object only in the way it is traditionally used. The concept of functional fixedness originated in Gestalt Psychology
, a movement in psychology that emphasizes holistic
processing. Karl Duncker
defined functional fixedness as being a "mental block against using an object in a new way that is required to solve a problem." (Duncker, 1945) This "block" limits the ability of an individual to use components given to them to complete a task, as they can not move past the original purpose of those components. For example, if someone needs a paperweight, but they only have a hammer, they may not see how the hammer can be used as a paperweight. This inability to see a hammer's use as anything other than for pounding nails, is functional fixedness. The person couldn't think to use the hammer in a way other than in its conventional function.
When tested, 5-year-old children show no signs of functional fixedness. It has been argued that this is because at age 5, any goal to be achieved with an object is equivalent to any other goal. However, by age 7, children have acquired the tendency to treat the originally intended purpose of an object as special (German & Defeyter, 2000).
More recently, Michael C. Frank and Michael Ramscar gave a written version of the candlebox problem to undergraduates at Stanford. When the problem was given with identical instructions to those in the original experiment, 23% of students were able to solve the problem. For another group of students, the noun phrases such as "book of matches" were underlined, and for a third group the nouns (e.g., "box") were underlined. For these two groups, 55% and 47% were able to solve the problem effectively. In a follow-up experiment, all the nouns except "box" were underlined and similar results were produced. The authors concluded that students' performance was contingent on their representation of the lexical concept "box" rather than instructional manipulations. The ability to overcome functional fixedness was contingent on having a flexible representation of the word box which allows students to see that the box can be used when attaching a candle to a wall.
preliminary evidence supporting the universality of functional fixedness was found (German & Barret, 2005). The study’s purpose was to test if individuals from non-industrialized societies, specifically with low exposure to “high-tech” artifacts, demonstrated functional fixedness. The study tested "The Shuar
", hunter-horticulturalists of the Amazon region of Ecuador, and compared them to a control baseline condition of
participants to provide these results.
The Shuar
community had only been exposed to a limited amount of industrialized artifacts, such as machetes, axes, cooking pots, nails, shotguns, and fishhooks, all considered “low-tech”. Two tasks were assessed to participants for the study: the box task, where participants had to build a tower to help a character from a fictional storyline to reach another character with a limited set of varied materials; the spoon task, where participants were also given a problem to solve based on a fictional story of a rabbit that had to cross a river (materials were used to represent settings) and they were given varied materials including a spoon. In the box-task, participants were slower to select the materials than participants in control conditions, but no difference in time to solve the problem was seen. In the spoon task, participants were slower in selection and completion of task. Results showed that Individuals from non-industrial (“technologically sparse cultures”) were susceptible to functional fixedness. They were faster to use artifacts without priming than when design function was explained to them. This occurred even though participants were less exposed to industrialized manufactured artifacts, and that the few artifacts they currently use were used in multiple ways regardless of their design. (German & Barret, 2005)
Following is one examples of the three problems used in experiment to understand more thoroughly the procedure of study.
In "The Disposable Spill-Proof Coffee Cup Problem", adapted from Jansson & Smith, 1991, participants were asked to construct as many designs as possible for an inexpensive, disposable, spill-proof coffee cup. Standard Condition participants were presented only with instructions. In the fixated condition, participants were presented with instructions, the design presented below, and problems they should be aware of. Finally, in the defixated condition, participants were presented the same as other conditions in addition to suggestions of design elements they should avoid using. The other two problems included building a bike rack, and designing a container for cream cheese.
A total of 266 freshmen students from a high school science class participated in the study. The experiment was a 2x2 design where conditions: "task contexts" (type and format) vs. "prior knowledge" (specific vs. general) were attested. Students were classified into 5 different groups, where 4 were according to their prior science knowledge (ranging from specific to general), and 1 served as a control group (no analog presentation). The 4 different groups were then classified into "analog type and analog format" conditions, structural or surface types and problem or surface formats.
Inconclusive evidence was found for positive analogical transfer based on prior knowledge, however groups did demonstrate variability. The problem format and the structural type of analog presentation showed the highest positive transference to problem solving. The researcher suggested then, that a well-thought and planned analogy relevant in format and type to the problem-solving task to be completed can be helpful for students to overcome functional fixedness. This study not only brought new knowledge about the human mind at work but also provides important tools for educational purposes and possible changes that teachers can apply as aids to lesson plans (Solomon, 1994).
Cognitive bias
A cognitive bias is a pattern of deviation in judgment that occurs in particular situations. Implicit in the concept of a "pattern of deviation" is a standard of comparison; this may be the judgment of people outside those particular situations, or may be a set of independently verifiable...
that limits a person to using an object only in the way it is traditionally used. The concept of functional fixedness originated in Gestalt Psychology
Gestalt psychology
Gestalt psychology or gestaltism is a theory of mind and brain of the Berlin School; the operational principle of gestalt psychology is that the brain is holistic, parallel, and analog, with self-organizing tendencies...
, a movement in psychology that emphasizes holistic
Holism
Holism is the idea that all the properties of a given system cannot be determined or explained by its component parts alone...
processing. Karl Duncker
Karl Duncker
Karl Duncker was a Gestalt psychologist. He attended Friedrich-Wilhelms-University from 1923 to 1923, spent 1925-1926 at Clark University in Worcester, MA as a visiting professor, where he received a masters in arts degree.Until 1935 he was a student and assistant of the founders of Gestalt...
defined functional fixedness as being a "mental block against using an object in a new way that is required to solve a problem." (Duncker, 1945) This "block" limits the ability of an individual to use components given to them to complete a task, as they can not move past the original purpose of those components. For example, if someone needs a paperweight, but they only have a hammer, they may not see how the hammer can be used as a paperweight. This inability to see a hammer's use as anything other than for pounding nails, is functional fixedness. The person couldn't think to use the hammer in a way other than in its conventional function.
When tested, 5-year-old children show no signs of functional fixedness. It has been argued that this is because at age 5, any goal to be achieved with an object is equivalent to any other goal. However, by age 7, children have acquired the tendency to treat the originally intended purpose of an object as special (German & Defeyter, 2000).
Examples in Research
Experimental paradigms typically involve solving problems in novel situations in which the subject has the use of a familiar object in an unfamiliar context. The object may be familiar from the subject’s past experience or from previous tasks within an experiment.Candle Box
In a classic experiment demonstrating functional fixedness, Duncker (1945) gave participants a candle, a box of thumbtacks, and a book of matches, and asked them to attach the candle to the wall so that it did not drip onto the table below. Duncker found that participants tried to attach the candle directly to the wall with the tacks, or to glue it to the wall by melting it. Very few of them thought of using the inside of the box as a candle-holder and tacking this to the wall. In Duncker’s terms the participants were “fixated” on the box’s normal function of holding thumbtacks and could not re-conceptualize it in a manner that allowed them to solve the problem. For instance, participants presented with an empty tack box were two times more likely to solve the problem than those presented with the tack box used as a container (Adamson 1952).More recently, Michael C. Frank and Michael Ramscar gave a written version of the candlebox problem to undergraduates at Stanford. When the problem was given with identical instructions to those in the original experiment, 23% of students were able to solve the problem. For another group of students, the noun phrases such as "book of matches" were underlined, and for a third group the nouns (e.g., "box") were underlined. For these two groups, 55% and 47% were able to solve the problem effectively. In a follow-up experiment, all the nouns except "box" were underlined and similar results were produced. The authors concluded that students' performance was contingent on their representation of the lexical concept "box" rather than instructional manipulations. The ability to overcome functional fixedness was contingent on having a flexible representation of the word box which allows students to see that the box can be used when attaching a candle to a wall.
Adamson
When Adamson (1952) replicated Duncker's box experiment, Adamson split participants into 2 experimental groups: preutilization and no preutilization. In this experiment, when there is preutilization, meaning when objects are presented to participants in a traditional manner (materials are in the box, thus using the box as a container), participants are less likely to consider the box for any other use, whereas with no preutilization (when boxes are presented empty), participants are more likely to think of other uses for the box. This showed that preutilization plays a part in functional fixedness.Birch and Rabinowitz
Birch and Rabinowitz (1951) adapted the two-cord problem from Maier (1930, 1931), where subjects would be given 2 cords hanging from the ceiling, and 2 heavy objects in the room. They are told they must connect the cords, but they are just far enough apart that one cannot reach the other easily. The solution was to tie one of the heavy objects to a cord and be a weight, and swing the cord as a pendulum, catch the rope as it swings while holding on to the other rope, and then tie them together. The participants are split into 3 groups: Group R, which completes a pretask of completing an electrical circuit by using a relay, Group S, which completes the circuit with a switch, and Group C which is the control group given no pretest experience. Group R participants were more likely to use the switch as the weight, and Group S were more likely to use the relay. Both groups did so because their previous experience led them to use the objects a certain way, and functional fixedness did not allow them to see the objects as being used for another purpose.Functional Fixedness Universal?
We may ask ourselves if functional fixedness varies across environments, cultures, or history. In a recent study,preliminary evidence supporting the universality of functional fixedness was found (German & Barret, 2005). The study’s purpose was to test if individuals from non-industrialized societies, specifically with low exposure to “high-tech” artifacts, demonstrated functional fixedness. The study tested "The Shuar
Shuar
The Shuar people are an indigenous people of Ecuador and Peru. They are members of the Jivaroan peoples, who are Amazonian tribes living at the headwaters of the Marañón River.-Name:...
", hunter-horticulturalists of the Amazon region of Ecuador, and compared them to a control baseline condition of
participants to provide these results.
The Shuar
Shuar
The Shuar people are an indigenous people of Ecuador and Peru. They are members of the Jivaroan peoples, who are Amazonian tribes living at the headwaters of the Marañón River.-Name:...
community had only been exposed to a limited amount of industrialized artifacts, such as machetes, axes, cooking pots, nails, shotguns, and fishhooks, all considered “low-tech”. Two tasks were assessed to participants for the study: the box task, where participants had to build a tower to help a character from a fictional storyline to reach another character with a limited set of varied materials; the spoon task, where participants were also given a problem to solve based on a fictional story of a rabbit that had to cross a river (materials were used to represent settings) and they were given varied materials including a spoon. In the box-task, participants were slower to select the materials than participants in control conditions, but no difference in time to solve the problem was seen. In the spoon task, participants were slower in selection and completion of task. Results showed that Individuals from non-industrial (“technologically sparse cultures”) were susceptible to functional fixedness. They were faster to use artifacts without priming than when design function was explained to them. This occurred even though participants were less exposed to industrialized manufactured artifacts, and that the few artifacts they currently use were used in multiple ways regardless of their design. (German & Barret, 2005)
Following the Wrong Footsteps: Fixation Effects of Pictorial Examples in a Design Problem-Solving Task
Investigators examined in two experiments "whether the inclusion of examples with innappropiate elements, in addition to the instructions for a design problem, would produce fixation effects in students naive to design tasks" (Chrysikou & Weisberg, 2005). They examined the inclusion of examples of inappropriate elements, by explicitly depicting problematic aspects of the problem presented to the students through example designs. They tested non-expert participants on three problem conditions: with standard instruction, fixated (with inclusion of problematic design), and defixated (inclusion of problematic design accompanied with helpful methods). They were able to support their hypothesis by finding that a) problematic design examples produce significant fixation effects, and b) fixation effects can be diminished with the use of defixating instructions.Following is one examples of the three problems used in experiment to understand more thoroughly the procedure of study.
In "The Disposable Spill-Proof Coffee Cup Problem", adapted from Jansson & Smith, 1991, participants were asked to construct as many designs as possible for an inexpensive, disposable, spill-proof coffee cup. Standard Condition participants were presented only with instructions. In the fixated condition, participants were presented with instructions, the design presented below, and problems they should be aware of. Finally, in the defixated condition, participants were presented the same as other conditions in addition to suggestions of design elements they should avoid using. The other two problems included building a bike rack, and designing a container for cream cheese.
Overcoming Functional Fixedness in Science Classrooms with Analogical Transfer
Based on the assumption that students are functionally fixed, a study on analogical transfer in the science classroom shed light on significant data that could provide an overcoming technique for functional fixedness. The findings support the fact that students show positive transfer (performance) on problem solving after being presented with analogies of certain structure and format (Solomon, 1994). The present study expanded Duncker’s experiments from 1945, by trying to demonstrate that when students were "…presented with a single analogy formatted as a problem, rather than as a story narrative, they would orient the task of problem-solving and facilitate positive transfer" (Solomon, 1994).A total of 266 freshmen students from a high school science class participated in the study. The experiment was a 2x2 design where conditions: "task contexts" (type and format) vs. "prior knowledge" (specific vs. general) were attested. Students were classified into 5 different groups, where 4 were according to their prior science knowledge (ranging from specific to general), and 1 served as a control group (no analog presentation). The 4 different groups were then classified into "analog type and analog format" conditions, structural or surface types and problem or surface formats.
Inconclusive evidence was found for positive analogical transfer based on prior knowledge, however groups did demonstrate variability. The problem format and the structural type of analog presentation showed the highest positive transference to problem solving. The researcher suggested then, that a well-thought and planned analogy relevant in format and type to the problem-solving task to be completed can be helpful for students to overcome functional fixedness. This study not only brought new knowledge about the human mind at work but also provides important tools for educational purposes and possible changes that teachers can apply as aids to lesson plans (Solomon, 1994).