Gamow factor
Encyclopedia
The Gamow Factor or Gamow-Sommerfeld Factor, named after its discoverer George Gamow
George Gamow
George Gamow , born Georgiy Antonovich Gamov , was a Russian-born theoretical physicist and cosmologist. He discovered alpha decay via quantum tunneling and worked on radioactive decay of the atomic nucleus, star formation, stellar nucleosynthesis, Big Bang nucleosynthesis, cosmic microwave...

, is a probability factor for two nuclear particles' chance of overcoming the Coulomb barrier
Coulomb barrier
The Coulomb barrier, named after Coulomb's law, which is named after physicist Charles-Augustin de Coulomb , is the energy barrier due to electrostatic interaction that two nuclei need to overcome so they can get close enough to undergo a nuclear reaction...

 in order to undergo nuclear reactions, for example in nuclear fusion
Nuclear fusion
Nuclear fusion is the process by which two or more atomic nuclei join together, or "fuse", to form a single heavier nucleus. This is usually accompanied by the release or absorption of large quantities of energy...

. By classical physics
Classical physics
What "classical physics" refers to depends on the context. When discussing special relativity, it refers to the Newtonian physics which preceded relativity, i.e. the branches of physics based on principles developed before the rise of relativity and quantum mechanics...

, there is almost no possibility for protons to fuse by crossing each other's Coulomb barrier, but when George Gamow instead applied quantum mechanics
Quantum mechanics
Quantum mechanics, also known as quantum physics or quantum theory, is a branch of physics providing a mathematical description of much of the dual particle-like and wave-like behavior and interactions of energy and matter. It departs from classical mechanics primarily at the atomic and subatomic...

 to the problem, he found that there was a significant chance for the fusion due to tunneling
Quantum tunnelling
Quantum tunnelling refers to the quantum mechanical phenomenon where a particle tunnels through a barrier that it classically could not surmount. This plays an essential role in several physical phenomena, such as the nuclear fusion that occurs in main sequence stars like the sun, and has important...

.

This probability increases rapidly with increasing particle energy, but at a given temperature the probability of a particle having a high energy falls off rapidly, following the Maxwell-Boltzmann distribution. Gamow found that, taken together, these effects mean that for any given temperature, the particles that actually fuse are mostly in a (temperature-dependent) narrow range of energies known as the Gamow window.

External links

The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK