International Aerial Robotics Competition
Encyclopedia
The International Aerial Robotics Competition (IARC) began in 1991 on the campus of the Georgia Institute of Technology
Georgia Institute of Technology
The Georgia Institute of Technology is a public research university in Atlanta, Georgia, in the United States...

 and is the longest running university-based robotics competition in the world. Since 1991, collegiate teams with the backing of industry and government have fielded autonomous flying robot
Robot
A robot is a mechanical or virtual intelligent agent that can perform tasks automatically or with guidance, typically by remote control. In practice a robot is usually an electro-mechanical machine that is guided by computer and electronic programming. Robots can be autonomous, semi-autonomous or...

s in an attempt to perform missions requiring robotic behaviors never before exhibited by a flying machine. In 1990, the term “aerial robotics” was coined by competition creator Robert Michelson
Robert C. Michelson
Robert C. Michelson is an American engineer and academic widely known for inventing the entomopter, a biologically inspired flapping-winged aerial robot, and for having established the International Aerial Robotics Competition. He has received degrees in electrical engineering from the Virginia...

 to describe a new class of small highly intelligent flying machines. The successive years of competition saw these aerial robots grow in their capabilities from vehicles that could at first barely maintain themselves in the air, to the most recent automatons which are self-stable, self-navigating, and able to interact with their environment—especially objects on the ground.

The primary goal of the competition has been to provide a reason for the state-of-the art in aerial robotics
Robotics
Robotics is the branch of technology that deals with the design, construction, operation, structural disposition, manufacture and application of robots...

 to move forward. Challenges set before the international collegiate community have been geared towards producing advances in the state-of-the-art at an increasingly aggressive pace. From 1991 through 2009, a total of six missions have been proposed. Each of them involved fully autonomous robot
Autonomous robot
Autonomous robots are robots that can perform desired tasks in unstructured environments without continuous human guidance. Many kinds of robots have some degree of autonomy. Different robots can be autonomous in different ways...

ic behavior that was undemonstrated at the time and impossible for any robotic system fielded anywhere in the world, even by the most sophisticated military robot
Military robot
Military robots are autonomous robots or remote-controlled devices designed for military applications.Such systems are currently being researched by a number of militaries.-History:...

s belonging to the super powers.

First mission

The initial mission to move a metallic disc from one side of an arena to another with a completely autonomous flying robot was seen by many as almost impossible. The college teams continued to improve their entries over the next two years when the competition saw its first autonomous takeoff, flight, and landing by a team from the Georgia Institute of Technology. Three years later in 1995 a team from Stanford University
Stanford University
The Leland Stanford Junior University, commonly referred to as Stanford University or Stanford, is a private research university on an campus located near Palo Alto, California. It is situated in the northwestern Santa Clara Valley on the San Francisco Peninsula, approximately northwest of San...

 was able to acquire a single disk and move it from one side of the arena to the other in a fully autonomous flight—half a decade earlier than some pundits had predicted.

Second mission

The competition mission was then toughened and made a bit less abstract by requiring teams to search for a toxic waste dump, map the location of partially-buried randomly-oriented toxic waste drums, identify the contents of each drum from the hazard labels found somewhere on the outside of each drum, and bring a sample back from one of the drums—all without any human intervention whatsoever.

In 1996 a team from the Massachusetts Institute of Technology
Massachusetts Institute of Technology
The Massachusetts Institute of Technology is a private research university located in Cambridge, Massachusetts. MIT has five schools and one college, containing a total of 32 academic departments, with a strong emphasis on scientific and technological education and research.Founded in 1861 in...

 and Boston University, with backing from Draper Labs, created a small fully autonomous flying robot that repeatedly and correctly mapped the location of all five of the toxic waste drums, and correctly identified the contents of two from the air, thereby completing approximately seventy five percent of the mission. The following year, an aerial robot developed by a team from Carnegie Mellon University
Carnegie Mellon University
Carnegie Mellon University is a private research university in Pittsburgh, Pennsylvania, United States....

 completed the entire mission.

Third mission

The third mission was begun in 1998. It was a search and rescue mission requiring fully autonomous robots to take off, fly to a disaster area and search for survivors and the dead amid raging fires, broken water mains, clouds of toxic gas, and rubble from destroyed buildings. The scenario was recreated at the U.S. Department of Energy's
United States Department of Energy
The United States Department of Energy is a Cabinet-level department of the United States government concerned with the United States' policies regarding energy and safety in handling nuclear material...

 Hazardous Material Management and Emergency Response (HAMMER) training facility where the above hazards could be recreated. Because of the realism of the scenario, animatrons were used instead of human actors to simulate survivors incapable of extracting themselves from the disaster area.

An aerial robot from Germany's Technische Universität Berlin
Technical University of Berlin
The Technische Universität Berlin is a research university located in Berlin, Germany. Translating the name into English is discouraged by the university, however paraphrasing as Berlin Institute of Technology is recommended by the university if necessary .The TU Berlin was founded...

 was able to detect and avoid all of the obstacles (many of which could have destroyed the robot itself), identify all the dead on the ground and the survivors (distinguishing between the two based on movement), and relay pictures of the survivors along with their locations back to first responders who would attempt a rescue. This mission was completed in 2000.

Fourth mission



  • The fourth mission was initiated in 2001. This fully autonomous mission involved three scenarios requiring the same autonomous behavior. The first scenario was a hostage rescue mission where a submarine 3 kilometers off the coast of a third world nation must send in an aerial robot to find a coastal city, identify the embassy where the hostages are being held, locate valid openings in the embassy building, enter (or send in a sensor probe/subvehicle) and relay pictures of the hostages back 3 km to the submarine prior to mounting an amphibious assault on the embassy to free the hostages.


  • The second scenario revolved around the discovery of an ancient mausoleum by archaeologists. An ancient virus contained in the mausoleum has quickly killed all the archaeological team, but prior to their death they radioed that a very important and undocumented tapestry is hanging inside. The local government is planning to cleanse the area with a fuel-air explosion in 15 minutes, so the scientists will send in an autonomous aerial robot to find the mausoleum, enter it (or send in a sensor probe/subvehicle) and relay pictures of the tapestry back prior to the destruction of the mausoleum and its contents.


  • The third scenario involved an explosion at a nuclear reactor facility which shuts down two of three reactors. Everyone is killed in the disaster and scientists must send in an aerial robot to find the operating reactor building, enter the building (or send in a sensor probe/subvehicle) and relay pictures of the control panels to determine if a melt-down is imminent. The scientists are forced to maintain a 3 kilometer stand-off distance due to the extreme radiation hazard.

    All three missions involve the same elements:

    1. Rapid ingress over a 3 km path
    2. Location of a building complex
    3. Location of a specific building within the complex
    4. Identification of valid openings in that building
    5. Entry into the building by the aerial robot or a sensor-carrying subvehicle
    6. Relay of pictures from within back to the launch point 3 km away
    7. Mission completion within 15 minutes
    8. Full autonomy throughout all aspects of the mission



This fourth IARC mission was conducted at the U.S. Army's Fort Benning
Fort Benning
Fort Benning is a United States Army post located southeast of the city of Columbus in Muscogee and Chattahoochee counties in Georgia and Russell County, Alabama...

 Soldier Battle Lab using the McKenna MOUT (Military Operations on Urban Terrain) site, which replicates a complete German village created for war gaming when the main cold war threat was perceived to come through the Fulda Gap
Fulda Gap
The Fulda Gap is a region of lower elevation between the former East German border and Frankfurt am Main, Germany. Named for the town of Fulda, the Fulda Gap was strategically important during the Cold War...

 into Germany. The fourth mission was completed in 2008 with various teams having already demonstrated all of the required aerial robotic behaviors mandated by the fourth mission rules, except being able to demonstrate these behaviors seamlessly in under 15 minutes—a feat considered by the organizer and judges to be inevitable given a bit more time, and therefore no longer a significant challenge. Thus the fourth mission was terminated, $80,000 in awards distributed, and the fifth mission established.

Fifth mission

The fifth mission picked up where the fourth mission left off by demonstrating the fully autonomous aerial robotic behaviors necessary to rapidly negotiate the confined internal spaces of a structure once it has been penetrated by an air vehicle. The nuclear reactor complex explosion scenario of the fourth mission was used as the backdrop for the fifth mission. The fifth mission required a fully autonomous aerial vehicle (presupposed to have been launched from a "mothership" just outside the structure as demonstrated during the fourth mission) to penetrate the structure and negotiate the more complex interior space containing hallways, small rooms, obstacles, and dead ends in order to search for a designated target without the aid of global-positioning navigational aids, and relay pictures back to a monitoring station some distance from the structure. The First Symposium on Indoor Flight Issues was held in conjunction with this 2009 IARC event.

Sixth mission

The new sixth mission began in 2010. The sixth mission is an extension of the 5th Mission theme of autonomous indoor flight behavior, however the 6th Mission demands more advanced behaviors than are currently possible by any aerial robot extant in 2010. The 2010 Symposium on Indoor Flight Issues was held concurrently at the University of Puerto Rico - Mayagüez during the 20th anniversary competition. The Official Rules for the current 6th Mission are available at the Competition web site.

Participants

Collegiate teams participating in the IARC have come primarily from the United states, but also from Germany, England, Switzerland, Canada, and India. Teams range in size from several students, up to twenty or more. Both undergraduate and graduate students populate the teams, but some teams have been composed entirely of undergraduates or postgraduates. Industry is not permitted to enter, but it may assist the student teams with funding and equipment.

Aerial robots

The aerial robots vary in design from fixed wing airplanes, to conventional helicopters, to ducted fans, to airships, and beyond to bizarre hybrid creations. Because the competition focuses on fully autonomous behavior, the air vehicle itself is of less importance.

Teams choosing to develop new air vehicle types have never won, as they are disadvantaged in comparison to those which adapt existing, working, air vehicles, and can therefore concentrate on performing the mission rather than developing something that will fly at all. As a result, adaptations of conventional rotary wing and fixed wing entries have always been the overall winners, with airships and ducted fans a close second.

Aerial robots must be unmanned and autonomous, and must compete based on their ability to sense the semi-structured environment of the competition arena. They may be intelligent or preprogrammed, but they must not be controlled by a remote human operator. Computational power need not be carried on the air vehicle itself. Computers operating from standard commercial power may be set up outside the competition arena boundary and uni- or bi-directional data may be transmitted to/from the vehicles in the arena. Size or weight constraints are normally placed on the aerial robots, which must be equipped with a method of manually-activated remote override of the primary propulsion system.

Venues

The International Aerial Robotics Competition was first held on the campus of the Georgia Institute of Technology (first mission, 1991–1995). Walt Disney World's EPCOT Center
Epcot
Epcot is a theme park in the Walt Disney World Resort, located near Orlando, Florida. The park is dedicated to the celebration of human achievement, namely international culture and technological innovation. The second park built at the resort, it opened on October 1, 1982 and was initially named...

 asked that the competition move to its location for the second mission, where it was held at the entrance to the park during 1996 and 1997. The U.S. Department of Energy's Hazardous Material Management and Emergency Response (HAMMER) training facility then brought the IARC to Richland WA from 1998 to 2000 for the conduct of the third mission. The fourth mission began in 2001 at the U.S. Navy's Webster Field in Maryland, but was moved to the Canada Olympic Village (Calgary, Canada) the following year because Webster Field was unsuitable. Weather, difficulty in airspace management, and extreme electromagnetic interference drove the IARC to an ideal venue where these issues could be managed: the U.S. Army's Fort Benning Soldier Battle Lab, McKenna MOUT site
Urban warfare
Urban warfare is combat conducted in urban areas such as towns and cities. Urban combat is very different from combat in the open at both the operational and tactical level...

. For the fourth mission scenarios, the existence of the uninhabited McKenna village provides the perfect venue. Due to the nature of the challenge, the fifth mission took place in an indoor location at the University of Puerto Rico at Mayagüez
University of Puerto Rico at Mayagüez
The University of Puerto Rico at Mayagüez or Recinto Universitario de Mayagüez in Spanish , is a land-grant, sea-grant, space-grant state university located in the city of Mayagüez, Puerto Rico...

. The current sixth mission was initiated in the coliseum on the campus of the University of Puerto Rico at Mayagüez during August 2010, however the sixth mission was moved to Grand Forks, North Dakota beginning in 2011. A second venue has been established in Beijing China beginning in 2012. This "Asian Venue" serves the Asian and Australian continents while the "American Venue" serves the American, European, and African continents. Teams are free to enter the competition at either venue. Beginning in 2012, the two venues will conduct the sixth mission under the same set of rules and within 48 hours of each other's time zone.

Prizes

IARC prizes have traditionally been "winner take all", although during the competition's early years monetary progress awards were given to further development of the best performers. With the fourth mission it was realized that there would be no quick winners, and that several years of development would be required by each of the teams. Therefore an incremental "growing prize pot" was established, to which the Association for Unmanned Vehicle Systems International adds another US$10,000 each year. The 2008 prize level was set at a total of $80,000. Any team completing the fourth mission in under 15 minutes would receive the entire $80,000 prize, otherwise the prize would be distributed based on 2008 competitor performance most closely approaching the 15-minute mission goal. By 2008, Levels 1 through 3 of the fourth mission had been demonstrated, proving that all required aerial robotic behaviors were possible, but by the end of the 2008 event, no single team was able to sequentially and seamlessly demonstrate all behaviors in under 15 minutes. The $80,000 was therefore divided between the ten finalists: (Georgia Institute of Technology
Georgia Institute of Technology
The Georgia Institute of Technology is a public research university in Atlanta, Georgia, in the United States...

 received $27,700; Virginia Polytechnic Institute & State University $17,700; and Embry Riddle/DeVry Calgary $12,200, with the remainder shared between the other finalists based on merit). $10,000 was awarded to a team from the Massachusetts Institute of Technology
Massachusetts Institute of Technology
The Massachusetts Institute of Technology is a private research university located in Cambridge, Massachusetts. MIT has five schools and one college, containing a total of 32 academic departments, with a strong emphasis on scientific and technological education and research.Founded in 1861 in...

 in 2009 which, in addition to receiving the AUVSI-sponsored prize award, also received their $1,000 application fee back under the incentive program outlined in the Official IARC Rules for 2009 which stated that any team completing the fifth mission during the first year of the mission, would receive a full rebate of their application fee.

Spin offs

The competition creator, Robert Michelson
Robert C. Michelson
Robert C. Michelson is an American engineer and academic widely known for inventing the entomopter, a biologically inspired flapping-winged aerial robot, and for having established the International Aerial Robotics Competition. He has received degrees in electrical engineering from the Virginia...

, is past President of the Association for Unmanned Vehicle Systems International (AUVSI)
Association for Unmanned Vehicle Systems International (AUVSI)
The Association for Unmanned Vehicle Systems International, also known as AUVSI, is an international nonprofit organization dedicated to advancing the technology of unmanned vehicles.- History :...

.
The IARC was first established with seed money for logistics and a grand prize that was backed by the Association. After the initial success and tremendous media attention garnered by the IARC, the AUVSI launched the Intelligent Ground Vehicle Competition a few years later in Detroit, MI. This was organized by AUVSI Board member, Jerry Lane who worked at the U.S. Army Tank Automotive Command at the time. In 1998, the underwater community was represented when AUVSI and the U.S. Office of Naval Research teamed up to offer the first International Autonomous Underwater Vehicle Competition which is held annually in the U.S. All of these competitions, land, sea, and air, have at their core, "full autonomy" as a distinctive characteristic. The Association for Unmanned Vehicle Systems International continues to support these competitions with logistics and prize money although there are numerous industry co-sponsors as well.

Selected IARC Reports and Publications

  1. Michelson, R.C., “Autonomous Aerial Robots,” Unmanned Systems, Volume 29 - No. 10, October 2011, Association for Unmanned Vehicle Systems International, Washington, D.C., pp 38-42
  2. Howe, J., Vogl, M., Banik, J., et al., "Design and Development of South Dakota School of Mines and Technology’s Aerial Robotic Reconnaissance System", 1994 Proceedings of the AUVSI.
  3. Chapuis, J., Eck,C., Geering, H.P., Mudra, R., "The Swiss Entry into the 1996 International Aerial Robotics Competition," 1996 Proceedings of the AUVSI, July 1996, Orlando, FL, pp. 947–953
  4. Padgett, W.T.,"Teaching design through design competition," Frontiers in Education Conference- Teaching and Learning in an Era of Chang, 27th Annual Conference Proceedings, 5–8 November 1997, Vol.3, pp. 1477–1480
  5. Koo, T.J., Shim, D.H., Shakernia, O., Sinopoli, B., Ma, Y., Hoffman, F., Sastry, S., "Hierarchical Hybrid System Design on Berkeley Unmanned Autonomous Aerial Vehicle," 1998 Proceedings of the AUVSI, July 1998
  6. Greer, D., McKerrow, P., Abrantes, J., "Robots in Urban Searc and Rescue Operations," Proceedings of the 2002 Australasian Conference on Automation, Auckland, Australian Robotics and Automation Association, 27–29 November 2002, pp. 25–30
  7. Proctor, A.A., Kannan, S.K., Raabe, C., Christophersen, H.B., and Johnson, E.N., “Development of an Autonomous Aerial Reconnaissance System at Georgia Tech,” Proceedings of the Association for Unmanned Vehicle Systems International Unmanned Systems Symposium & Exhibition, 2003.

External links

The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK