Iwahori subgroup
Encyclopedia
In algebra, an Iwahori subgroup is a subgroup of a reductive algebraic group over a local field
Local field
In mathematics, a local field is a special type of field that is a locally compact topological field with respect to a non-discrete topology.Given such a field, an absolute value can be defined on it. There are two basic types of local field: those in which the absolute value is archimedean and...

 that is analogous to a Borel subgroup
Borel subgroup
In the theory of algebraic groups, a Borel subgroup of an algebraic group G is a maximal Zariski closed and connected solvable algebraic subgroup.For example, in the group GLn ,...

 of an algebraic group. A parahoric subgroup is a subgroup that is a finite union of double cosets of an Iwahori subgroup, so is analogous to a parabolic subgroup of an algebraic group. Iwahori subgroups are named after Nagayoshi Iwahori
Nagayoshi Iwahori
Nagayoshi Iwahori is a Japanese mathematician working on algebraic groups over local fields who introduced Iwahori–Hecke algebras and Iwahori subgroups....

, and "parahoric" is a portmanteau of "parabolic" and "Iwahori". studied Iwahori subgroups for Chevalley groups over p-adic fields, and extended their work to more general groups.

Roughly speaking, an Iwahori subgroup of an algebraic group G(K), for a local field K with integers O and residue field k, is the inverse image in G(O) of a Borel subgroup of G(k).

A reductive group over a local field has a Tits system (B,N), where B is a parahoric group, and the Weyl group of the Tits system is an affine Coxeter group.
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK