Kuiper quadrangle
Encyclopedia
The Kuiper quadrangle, located in a heavily cratered region of Mercury
, includes the young, 55-km-diameter crater Kuiper
(11° S., 31.5° ), which has the highest albedo
recorded on the planet, and the small crater Hun Kal
(0.6° S., 20.0° ), which is the principal reference point for Mercurian longitude (Davies and Batson, 1975). Impact craters and basins, their numerous secondary crater
s, and heavily to lightly cratered plains are the characteristic landforms of the region. At least six multiringed basins ranging from 150 km to 440 km in diameter are present. Inasmuch as multiringed basins occur widely on that part of Mercury photographed by Mariner 10
, as well as on the Moon
and Mars
, they offer a potentially valuable basis for comparison between these planetary bodies.
and III, obtained during the incoming phases of three encounters of the Mariner 10
spacecraft with Mercury. Mercury I includes 75 whole-frame photographs of the Kuiper quadrangle; Mercury II, 13 whole-frame photographs; and Mercury III, 70 quarter-frame photographs. The photographs include 19 stereopairs in the southern part of the quadrangle. The most distant of the photographs was taken at an altitude of 89,879 km, the closest at an altitude of 7,546 km. Resolution, therefore, varies widely but ranges from about l.5 to 2.0 km over most of the area. A wide range (more than 50°) of both viewing and solar illumination angles precludes a high degree of mapping consistency. The easternmost 10° of the quadrangle is beyond the evening terminator
. A low angle of solar illumination and a high viewing angle make possible discrimination of topographic detail near the terminator. Higher angles of solar illumination and lower viewing angles make it increasingly difficult to discern topographic variations to the west. Many geologic units cannot be specifically identified because of unfavorable viewing geometry west ofapproximately 55° . Thus, mapping reliability decreases westward.
Mapping methods and principles are adapted from those developed for lunar photogeologic mapping (Wilhelms, 1970, 1972; Wilhelms and McCauley, 1971).
Map units are distinguished on the basis of topography, texture, and albedo and are ranked in relative age on the basis of superposition and transection relations,
density of superposed craters, and sharpness of topography. Because of the lack of a widespread, easily identifiable stratigraphic datum on this part of Mercury, a morphologic classification of crater and basin materials was the basis for determining relative ages of many materials. A photomosaic map of the best available photographs aided greatly in geologic interpretation and mapping.
The oldest rocks exposed in the quadrangle are the intercrater plains material and the rims of the oldest craters and basins. Collectively, these rocks form a relatively subdued terrain of moderate relief. They are similar to some of the rolling and hilly terra and hilly and pitted materials in the southern lunar highlands,
particularly in the Purbach (Holt, 1974) and Tycho (Pohn, 1972) quadrangles. The intercrater plains unit is commonly marked by the soft outlines of numerous overlapping secondary craters producing a subdued hummocky texture. It is gradational in places with cratered plains material, which forms flat,
densely cratered surfaces similar to pre-Imbrian plains on the Moon (Wilhelms andMcCauley, 1971; Scott, 1972) Although both the cratered and intercrater plains deposits are interpreted to be volcanic, the latter has been highly degraded by repeated impacts over a longer period of time. Much of its surface is probably covered by a relatively thick regolith
of reworked impact breccia
s.
The cratered plains material is relatively flat with broad ridges and lobate scarp
s that in places resemble those of some of the lunar maria. It is difficult to obtain reliable crater counts on this unit because many secondary craters cannot be distinguished from primary craters. Cratered plains materials embay craters in classes c1 to c3; they may represent lava flows extruded after an initial phase ofimpact flux. The albedo of the cratered plains is intermediate compared to that of other mercurian units, but higher than that of the lunar maria, and may reflect lower iron
and titanium
content.
The youngest rock units consist of rough terra and smooth plains materials. Rough terra occurs as overlapping and intermixed ejecta blankets around dusters of large young craters in the eastern part of the quadrangle. The relief here appears tobe higher than elsewhere in the map area, and the occurrence of dense arrays of fresh secondary craters produces a coarsely textured, hummocky surface at a scaleof about 10–20 km. The effect of roughness is highlighted by the low sun illumination angle. Ordinarily, rough terra material would be subdivided and mapped as individual ejecta blankets around and belonging to particular craters. In this eastern region, however, the closely grouped craters have about the same age, and it has not been possible to distinguish the boundaries between their aprons in many places.
Smooth plains material covers the floors of numerous craters in all age classifications. Its surface is scoured by secondary craters from classes c4 and c5 craters at many places in the eastern part of the quadrangle and, within the crater Homer
(1° S., 37° ), by secondaries from the class c3 craters Titian
(3° S., 42° ) and Handel (4° N., 34° ). Thus the smooth plains unit may have a relatively wide agerange. Like the cratered plains, it exhibits lobate scarps and few mare-like ridges, but these are generally smaller than those of the cratered plains and more nearly resemble those of the lunar maria. Although crater counts are more reliable because there are fewer secondaries than in the cratered plains, resolution is a serious constraint to developing crater counts on the relatively small tracts of smooth plains. Preliminary counts made on a few of the more extensive occurrences of smooth plains show a cumulative crater frequency of about 7.5 × 102/106 km2 for craters larger than approximately 2.5 km. This frequency is comparable to that of the lunar maria near the Apollo 11
landing site (Greeley and Gault, 1970; Neukum andothers, 1975; Meyer and Grolier, 1977). Like that of the cratered plains, the albedo of the smooth plains is intermediate compared to other units on Mercury but is high compared to that of the mare basalt
on the Moon.
A few patches of very dark material occur in the western part of the quadrangle where the sun angle is high and albedo contrasts are enhanced. The largest of these dark patches is apparently superposed on the bright rays of a c5 crater and is therefore very young.
are ubiquitous features of the mercurian surface. For the purpose of mapping, a fivefold morphologic classification of craters (fig. 10 in McCauley andothers, 1981) is the basis for determining their relative ages. The youngest craters (c5) have sharp rim crests, textured ejecta blankets, and a well-defined field of secondary craters. Under favorable lighting conditions, the youngest craters exhibit bright rays superposed on all older materials. Older craters have increasingly degraded rims and lower relief and have lost their secondary crater fields. The major differences between mercurian and lunar craters are apparently related to the greater gravitational acceleration and the higher impact velocities on Mercury. Continuous ejecta deposits are less extensive, and secondary craters are more sharply defined and clustered nearer their primary crater. Also on Mercury, accentuated secondary craters form prominent crater chain
s radial to large craters.
Craters within the Kuiper quadrangle increase in complexity as they increase in size from simple bowl-shaped craters to complex craters with central peaks to multiringed basins. Kuiper
(11° S., 31.5°) is a moderate-size crater with a central peak cluster; Brunelleschi (9° S., 22.5°) exhibits an incomplete ring of peaks; and Rodin
(22° N., 18°) is a well-developed double-ringed basin. These three craters are mercurian counterparts in morphology to the lunar craters Copernicus
, Compton
(or Antoniadi
), and Schrödinger
. All craters larger than about 35 km diameter and basins are filled to some extent with plains materials, and exposed rims of partly buried craters within the basins indicate that the fill is about 700 to 1000 m thick (De Hon and Waskom, 1976).
Six basins ranging in age from cl to c3 were formed during the waning stages of high-impact flux when the surface was virtually saturated with craters and basins.
Later cratering history records a decreasing impact flux: of craters larger than 50 km diameter, 42 are classed as c3; 19 craters are assigned to c4; and 9 craters are c5. There is also a decrease in the size of the largest crater or basin formed in each age class from c2 to c5.
Ridges are broader than many lunar mare ridges and are confined largely to the cratered plains materials. Antoniadi Dorsum
, which is a well-developed broad ridge north of the Kuiper quadrangle, is less well developed at its south end and appears in this quadrangle as an irregular scarp. A number of linear depressions superficially resemble graben
s but are chains of overlapping secondary craters, for example, Goldstone Vallis
(15° S., 32°) and Haystack Vallis
(5° N., 46°).
flux. As the impact flux decreased, cratered plains materials of possible volcanic origin were deposited in broad, low-lying areas, flooding, embaying, or partially burying preexisting craters. The youngest multiringed basins (Renoir, Rodin
, and the unnamed basin at 15° S., 15°) formed near the end of this stage (about c3 time), as did the Caloris Basin
on the opposite side of the planet (McCauley and others, 1981; Schaber andMcCauley, 1980). Craters that formed still later during the period of low impact rates are well preserved. During this late stage, smooth plains materials were deposited in basins, craters, and localized low areas and have low crater density. The youngest craters are sharp rimmed with bright rays.
The small size of Mercury, its lack of atmosphere, and the cratered nature of its surface invite comparison with the Moon. The geologic histories of the two bodies are similar. Both surfaces record a decreasing impact flux. The cratering history of Mercury was concurrent with episodes of lava flooding (cratered plains)
that may have obliterated some basins and flooded large areas in a manner similar to the mare filling on the Moon. Bright-rayed craters, such as Kuiper, mark the youngest events similar to Copernican craters on the Moon; some dark patches along the west margin of the quadrangle may represent late volcanism.
Some differences between the Moon and that part of Mercury observed in this quadrangle may be more apparent than real. Apparent differences may be the result of resolution of the imaging system, and small viewing and illumination angles that do not allow inspection of the surface under varied conditions. Real differences may be the result of Mercury’s size, gravitational field, proximity to the Sun, internal composition and structure, or timing of major volcanic episodes relative to the decrease in impact craters. Surface differences include the preservation of secondary craters around older craters and basins, and the absence of recognizable textured and lineated ejecta blankets such as those surrounding the Imbrium and Orientale Basins on the Moon. Possible differences in volcanic features include the absence of widespread dark mare-type deposits, volcanic domes and cones, and sinuous rilles. Whereas plains and terra divisions may be distinguished on Mercury, the distinct lunar dichotomy of mare and highlands is not present on that half of Mercury observed by Mariner 10.
Mercury (planet)
Mercury is the innermost and smallest planet in the Solar System, orbiting the Sun once every 87.969 Earth days. The orbit of Mercury has the highest eccentricity of all the Solar System planets, and it has the smallest axial tilt. It completes three rotations about its axis for every two orbits...
, includes the young, 55-km-diameter crater Kuiper
Kuiper (crater on Mercury)
Kuiper is a moderate-size crater with a central peak cluster located at 11 S, 31.5 W on Mercury. It is 60 km in diameter and was named after Gerard Kuiper. Kuiper crater has the highest recorded albedo of any region on the planet's surface, suggesting that it is one of the youngest craters.Kuiper...
(11° S., 31.5° ), which has the highest albedo
Albedo
Albedo , or reflection coefficient, is the diffuse reflectivity or reflecting power of a surface. It is defined as the ratio of reflected radiation from the surface to incident radiation upon it...
recorded on the planet, and the small crater Hun Kal
Hun Kal (crater)
Hun Kal is a small crater on Mercury that serves as the reference point for the planet's system of longitude. The longitude of Hun Kal's center is defined as being 20° W, thus establishing the planet's prime meridian....
(0.6° S., 20.0° ), which is the principal reference point for Mercurian longitude (Davies and Batson, 1975). Impact craters and basins, their numerous secondary crater
Secondary crater
Secondary craters are impact craters formed by the ejecta that was thrown out of a larger crater. They sometimes form radial crater chains.-External links:*...
s, and heavily to lightly cratered plains are the characteristic landforms of the region. At least six multiringed basins ranging from 150 km to 440 km in diameter are present. Inasmuch as multiringed basins occur widely on that part of Mercury photographed by Mariner 10
Mariner 10
Mariner 10 was an American robotic space probe launched by NASA on November 3, 1973, to fly by the planets Mercury and Venus. It was launched approximately two years after Mariner 9 and was the last spacecraft in the Mariner program...
, as well as on the Moon
Moon
The Moon is Earth's only known natural satellite,There are a number of near-Earth asteroids including 3753 Cruithne that are co-orbital with Earth: their orbits bring them close to Earth for periods of time but then alter in the long term . These are quasi-satellites and not true moons. For more...
and Mars
Mars
Mars is the fourth planet from the Sun in the Solar System. The planet is named after the Roman god of war, Mars. It is often described as the "Red Planet", as the iron oxide prevalent on its surface gives it a reddish appearance...
, they offer a potentially valuable basis for comparison between these planetary bodies.
Mariner 10 photography
Basic information about the planetary surface of the Kuiper quadrangle is provided by three sequences of high-quality photographs designated Mercury I, II,and III, obtained during the incoming phases of three encounters of the Mariner 10
Mariner 10
Mariner 10 was an American robotic space probe launched by NASA on November 3, 1973, to fly by the planets Mercury and Venus. It was launched approximately two years after Mariner 9 and was the last spacecraft in the Mariner program...
spacecraft with Mercury. Mercury I includes 75 whole-frame photographs of the Kuiper quadrangle; Mercury II, 13 whole-frame photographs; and Mercury III, 70 quarter-frame photographs. The photographs include 19 stereopairs in the southern part of the quadrangle. The most distant of the photographs was taken at an altitude of 89,879 km, the closest at an altitude of 7,546 km. Resolution, therefore, varies widely but ranges from about l.5 to 2.0 km over most of the area. A wide range (more than 50°) of both viewing and solar illumination angles precludes a high degree of mapping consistency. The easternmost 10° of the quadrangle is beyond the evening terminator
Terminator (solar)
A terminator, twilight zone or "grey line" is a moving line that separates the illuminated day side and the dark night side of a planetary body...
. A low angle of solar illumination and a high viewing angle make possible discrimination of topographic detail near the terminator. Higher angles of solar illumination and lower viewing angles make it increasingly difficult to discern topographic variations to the west. Many geologic units cannot be specifically identified because of unfavorable viewing geometry west ofapproximately 55° . Thus, mapping reliability decreases westward.
Mapping methods and principles are adapted from those developed for lunar photogeologic mapping (Wilhelms, 1970, 1972; Wilhelms and McCauley, 1971).
Map units are distinguished on the basis of topography, texture, and albedo and are ranked in relative age on the basis of superposition and transection relations,
density of superposed craters, and sharpness of topography. Because of the lack of a widespread, easily identifiable stratigraphic datum on this part of Mercury, a morphologic classification of crater and basin materials was the basis for determining relative ages of many materials. A photomosaic map of the best available photographs aided greatly in geologic interpretation and mapping.
Stratigraphy
The rock units are subdivided into three major groups: plains materials, terra materials, and crater and basin materials. The plains and smooth terra units are considered to be volcanic in part, and thus may have a different origin from the impact breccias and churned regolith forming the rough terra and crater deposits.The oldest rocks exposed in the quadrangle are the intercrater plains material and the rims of the oldest craters and basins. Collectively, these rocks form a relatively subdued terrain of moderate relief. They are similar to some of the rolling and hilly terra and hilly and pitted materials in the southern lunar highlands,
particularly in the Purbach (Holt, 1974) and Tycho (Pohn, 1972) quadrangles. The intercrater plains unit is commonly marked by the soft outlines of numerous overlapping secondary craters producing a subdued hummocky texture. It is gradational in places with cratered plains material, which forms flat,
densely cratered surfaces similar to pre-Imbrian plains on the Moon (Wilhelms andMcCauley, 1971; Scott, 1972) Although both the cratered and intercrater plains deposits are interpreted to be volcanic, the latter has been highly degraded by repeated impacts over a longer period of time. Much of its surface is probably covered by a relatively thick regolith
Regolith
Regolith is a layer of loose, heterogeneous material covering solid rock. It includes dust, soil, broken rock, and other related materials and is present on Earth, the Moon, some asteroids, and other terrestrial planets and moons.-Etymology:...
of reworked impact breccia
Breccia
Breccia is a rock composed of broken fragments of minerals or rock cemented together by a fine-grained matrix, that can be either similar to or different from the composition of the fragments....
s.
The cratered plains material is relatively flat with broad ridges and lobate scarp
Escarpment
An escarpment is a steep slope or long cliff that occurs from erosion or faulting and separates two relatively level areas of differing elevations.-Description and variants:...
s that in places resemble those of some of the lunar maria. It is difficult to obtain reliable crater counts on this unit because many secondary craters cannot be distinguished from primary craters. Cratered plains materials embay craters in classes c1 to c3; they may represent lava flows extruded after an initial phase ofimpact flux. The albedo of the cratered plains is intermediate compared to that of other mercurian units, but higher than that of the lunar maria, and may reflect lower iron
Iron
Iron is a chemical element with the symbol Fe and atomic number 26. It is a metal in the first transition series. It is the most common element forming the planet Earth as a whole, forming much of Earth's outer and inner core. It is the fourth most common element in the Earth's crust...
and titanium
Titanium
Titanium is a chemical element with the symbol Ti and atomic number 22. It has a low density and is a strong, lustrous, corrosion-resistant transition metal with a silver color....
content.
The youngest rock units consist of rough terra and smooth plains materials. Rough terra occurs as overlapping and intermixed ejecta blankets around dusters of large young craters in the eastern part of the quadrangle. The relief here appears tobe higher than elsewhere in the map area, and the occurrence of dense arrays of fresh secondary craters produces a coarsely textured, hummocky surface at a scaleof about 10–20 km. The effect of roughness is highlighted by the low sun illumination angle. Ordinarily, rough terra material would be subdivided and mapped as individual ejecta blankets around and belonging to particular craters. In this eastern region, however, the closely grouped craters have about the same age, and it has not been possible to distinguish the boundaries between their aprons in many places.
Smooth plains material covers the floors of numerous craters in all age classifications. Its surface is scoured by secondary craters from classes c4 and c5 craters at many places in the eastern part of the quadrangle and, within the crater Homer
Homer (crater)
Homer is a crater on Mercury.Deposits of material in and around this crater suggest the possibility of explosive volcanic eruptions at some point in the planet's history.The naming of a Moon crater Homer at 24.3S, 133.6E was not approved by the IAU....
(1° S., 37° ), by secondaries from the class c3 craters Titian
Titian (crater)
Titian is a crater on Mercury.In an enhanced color image, the smooth floor of Titian is a brighter orange color than the surrounding area, likely due to being filled with volcanic material. Ejecta from Titian appear blue and cover much of the surface surrounding the crater. This material was...
(3° S., 42° ) and Handel (4° N., 34° ). Thus the smooth plains unit may have a relatively wide agerange. Like the cratered plains, it exhibits lobate scarps and few mare-like ridges, but these are generally smaller than those of the cratered plains and more nearly resemble those of the lunar maria. Although crater counts are more reliable because there are fewer secondaries than in the cratered plains, resolution is a serious constraint to developing crater counts on the relatively small tracts of smooth plains. Preliminary counts made on a few of the more extensive occurrences of smooth plains show a cumulative crater frequency of about 7.5 × 102/106 km2 for craters larger than approximately 2.5 km. This frequency is comparable to that of the lunar maria near the Apollo 11
Apollo 11
In early 1969, Bill Anders accepted a job with the National Space Council effective in August 1969 and announced his retirement as an astronaut. At that point Ken Mattingly was moved from the support crew into parallel training with Anders as backup Command Module Pilot in case Apollo 11 was...
landing site (Greeley and Gault, 1970; Neukum andothers, 1975; Meyer and Grolier, 1977). Like that of the cratered plains, the albedo of the smooth plains is intermediate compared to other units on Mercury but is high compared to that of the mare basalt
Basalt
Basalt is a common extrusive volcanic rock. It is usually grey to black and fine-grained due to rapid cooling of lava at the surface of a planet. It may be porphyritic containing larger crystals in a fine matrix, or vesicular, or frothy scoria. Unweathered basalt is black or grey...
on the Moon.
A few patches of very dark material occur in the western part of the quadrangle where the sun angle is high and albedo contrasts are enhanced. The largest of these dark patches is apparently superposed on the bright rays of a c5 crater and is therefore very young.
Craters and basins
CratersImpact crater
In the broadest sense, the term impact crater can be applied to any depression, natural or manmade, resulting from the high velocity impact of a projectile with a larger body...
are ubiquitous features of the mercurian surface. For the purpose of mapping, a fivefold morphologic classification of craters (fig. 10 in McCauley andothers, 1981) is the basis for determining their relative ages. The youngest craters (c5) have sharp rim crests, textured ejecta blankets, and a well-defined field of secondary craters. Under favorable lighting conditions, the youngest craters exhibit bright rays superposed on all older materials. Older craters have increasingly degraded rims and lower relief and have lost their secondary crater fields. The major differences between mercurian and lunar craters are apparently related to the greater gravitational acceleration and the higher impact velocities on Mercury. Continuous ejecta deposits are less extensive, and secondary craters are more sharply defined and clustered nearer their primary crater. Also on Mercury, accentuated secondary craters form prominent crater chain
Crater chain
A crater chain is a line of craters along the surface of an astronomical body. The descriptor term for crater chains is catena , as specified by the International Astronomical Union's rules on planetary nomenclature....
s radial to large craters.
Craters within the Kuiper quadrangle increase in complexity as they increase in size from simple bowl-shaped craters to complex craters with central peaks to multiringed basins. Kuiper
Kuiper (crater on Mercury)
Kuiper is a moderate-size crater with a central peak cluster located at 11 S, 31.5 W on Mercury. It is 60 km in diameter and was named after Gerard Kuiper. Kuiper crater has the highest recorded albedo of any region on the planet's surface, suggesting that it is one of the youngest craters.Kuiper...
(11° S., 31.5°) is a moderate-size crater with a central peak cluster; Brunelleschi (9° S., 22.5°) exhibits an incomplete ring of peaks; and Rodin
Rodin (crater)
Rodin is an impact crater on the planet Mercury, 229 kilometers in diameter. It is located at 21.1°N, 18.2°W, north of the craters Abu Nuwas and Moliere, and east of the crater Ts'ai Wen-chi. Inside Rodin are two craterlets, one to the east of the center and one to the north. The rim is even and...
(22° N., 18°) is a well-developed double-ringed basin. These three craters are mercurian counterparts in morphology to the lunar craters Copernicus
Copernicus (lunar crater)
Copernicus is a prominent lunar impact crater named after the astronomer Nicolaus Copernicus, located in eastern Oceanus Procellarum. It is estimated to be about 800 million years old, and typifies craters that formed during the Copernican period in that it has a prominent ray system.-...
, Compton
Compton (crater)
Compton is a prominent lunar crater that is located in the northern hemisphere on the far side of the Moon. It lies to the east of the Mare Humboldtianum, and southwest of the walled plain Schwarzschild. To the southeast of Compton is the heavily eroded crater Swann.This formation is roughly...
(or Antoniadi
Antoniadi (lunar crater)
Antoniadi is a large lunar impact crater that lies on the southern hemisphere on the far side of the Moon. The crater intrudes into the southeastern rim of the crater Minnaert, a slightly smaller formation that is significantly more eroded. Attached to the eastern rim of Antoniadi is Numerov,...
), and Schrödinger
Schrödinger (crater)
Schrödinger is a huge lunar impact crater of the form traditionally called a walled plain and is named after Erwin Schrödinger. It is located near the south lunar pole on the far side of the Moon, and can only be viewed from orbit. The smaller crater Ganswindt is attached to the southwestern rim of...
. All craters larger than about 35 km diameter and basins are filled to some extent with plains materials, and exposed rims of partly buried craters within the basins indicate that the fill is about 700 to 1000 m thick (De Hon and Waskom, 1976).
Six basins ranging in age from cl to c3 were formed during the waning stages of high-impact flux when the surface was virtually saturated with craters and basins.
Later cratering history records a decreasing impact flux: of craters larger than 50 km diameter, 42 are classed as c3; 19 craters are assigned to c4; and 9 craters are c5. There is also a decrease in the size of the largest crater or basin formed in each age class from c2 to c5.
Structure
Structural features are sparse or unresolved in this part of Mercury. The Kuiper quadrangle apparently has none of the scarps that occur elsewhere on the planet that have been interpreted as high-angle reverse faults. The most prominent structures are the rings associated with some large craters or basins, faults that transect crater floors, and lobate scarps and ridges in the plains materials. Most of the faults and scarps that transect crater floors clearly delineate crater-filling materials standing at different levels, and in at least two craters (19° S., 31°; 16° N., 30°), the traces of the faults on the crater walls indicate that the faults have normal displacements. A few faults cut intercrater areas and trend generally northwest or northeast (Scott and others, 1976).Ridges are broader than many lunar mare ridges and are confined largely to the cratered plains materials. Antoniadi Dorsum
Antoniadi Dorsum
Antoniadi Dorsum is a ridge on Mercury at . It was named by the International Astronomical Union after Eugène Michel Antoniadi....
, which is a well-developed broad ridge north of the Kuiper quadrangle, is less well developed at its south end and appears in this quadrangle as an irregular scarp. A number of linear depressions superficially resemble graben
Graben
In geology, a graben is a depressed block of land bordered by parallel faults. Graben is German for ditch. Graben is used for both the singular and plural....
s but are chains of overlapping secondary craters, for example, Goldstone Vallis
Goldstone Vallis
Goldstone Vallis is a valley on Mercury located at 15.8 S, 31.7 W. It is named after Goldstone Observatory. While it superficially resembles a graben, it is actually a chain of overlapping secondary craters....
(15° S., 32°) and Haystack Vallis
Haystack Vallis
Haystack Vallis is a valley at 4.7° N, 46.2° W on Mercury. It superficially resembles a graben but is actually a chain of overlapping secondary craters. It was named after Haystack Observatory....
(5° N., 46°).
Geologic history
The interpretable geologic history of the Kuiper quadrangle is primarily a record of decreasing meteoroid flux during which large craters and basins formed and plains materials were deposited. A decreasing rate of crater production is indicated by progressively fewer craters in each successively younger crater class. Approximately half of the mapped area contains a high density of craters and multiringed basins formed by the intense early bombardment. It is doubtful that any primary crustal material has been preserved without brecciation and redistribution by repeated impacts. The present crater population represents only the craters surviving at the end of the stage of highest meteoroidMeteoroid
A meteoroid is a sand- to boulder-sized particle of debris in the Solar System. The visible path of a meteoroid that enters Earth's atmosphere is called a meteor, or colloquially a shooting star or falling star. If a meteoroid reaches the ground and survives impact, then it is called a meteorite...
flux. As the impact flux decreased, cratered plains materials of possible volcanic origin were deposited in broad, low-lying areas, flooding, embaying, or partially burying preexisting craters. The youngest multiringed basins (Renoir, Rodin
Rodin (crater)
Rodin is an impact crater on the planet Mercury, 229 kilometers in diameter. It is located at 21.1°N, 18.2°W, north of the craters Abu Nuwas and Moliere, and east of the crater Ts'ai Wen-chi. Inside Rodin are two craterlets, one to the east of the center and one to the north. The rim is even and...
, and the unnamed basin at 15° S., 15°) formed near the end of this stage (about c3 time), as did the Caloris Basin
Caloris Basin
The Caloris Basin, also called Caloris Planitia, is a large impact crater on Mercury about in diameter, one of the largest impact basins in the solar system. Caloris is Latin for heat and the basin is so-named because the Sun is almost directly overhead every second time Mercury passes perihelion...
on the opposite side of the planet (McCauley and others, 1981; Schaber andMcCauley, 1980). Craters that formed still later during the period of low impact rates are well preserved. During this late stage, smooth plains materials were deposited in basins, craters, and localized low areas and have low crater density. The youngest craters are sharp rimmed with bright rays.
The small size of Mercury, its lack of atmosphere, and the cratered nature of its surface invite comparison with the Moon. The geologic histories of the two bodies are similar. Both surfaces record a decreasing impact flux. The cratering history of Mercury was concurrent with episodes of lava flooding (cratered plains)
that may have obliterated some basins and flooded large areas in a manner similar to the mare filling on the Moon. Bright-rayed craters, such as Kuiper, mark the youngest events similar to Copernican craters on the Moon; some dark patches along the west margin of the quadrangle may represent late volcanism.
Some differences between the Moon and that part of Mercury observed in this quadrangle may be more apparent than real. Apparent differences may be the result of resolution of the imaging system, and small viewing and illumination angles that do not allow inspection of the surface under varied conditions. Real differences may be the result of Mercury’s size, gravitational field, proximity to the Sun, internal composition and structure, or timing of major volcanic episodes relative to the decrease in impact craters. Surface differences include the preservation of secondary craters around older craters and basins, and the absence of recognizable textured and lineated ejecta blankets such as those surrounding the Imbrium and Orientale Basins on the Moon. Possible differences in volcanic features include the absence of widespread dark mare-type deposits, volcanic domes and cones, and sinuous rilles. Whereas plains and terra divisions may be distinguished on Mercury, the distinct lunar dichotomy of mare and highlands is not present on that half of Mercury observed by Mariner 10.