List of A7 polytopes
Encyclopedia
Orthographic projection
Orthographic projection
Orthographic projection is a means of representing a three-dimensional object in two dimensions. It is a form of parallel projection, where all the projection lines are orthogonal to the projection plane, resulting in every plane of the scene appearing in affine transformation on the viewing surface...

s
A7 Coxeter plane

7-simplex

In 7-dimensional geometry
Geometry
Geometry arose as the field of knowledge dealing with spatial relationships. Geometry was one of the two fields of pre-modern mathematics, the other being the study of numbers ....

, there are 71 uniform polytopes with A7 symmetry. There is one self-dual regular form, the 7-simplex with 8 vertices.

Each can be visualized as symmetric orthographic projection
Orthographic projection
Orthographic projection is a means of representing a three-dimensional object in two dimensions. It is a form of parallel projection, where all the projection lines are orthogonal to the projection plane, resulting in every plane of the scene appearing in affine transformation on the viewing surface...

s in Coxeter planes of the A7 Coxeter group, and other subgroups.

Graphs

Symmetric orthographic projection
Orthographic projection
Orthographic projection is a means of representing a three-dimensional object in two dimensions. It is a form of parallel projection, where all the projection lines are orthogonal to the projection plane, resulting in every plane of the scene appearing in affine transformation on the viewing surface...

s of these 135 polytopes can be made in the A7, A6, A5, A4, A3, A2 Coxeter planes. Ak has [k+1] symmetry. For even k and symmetrically ringed-diagrams, symmetry doubles to [2(k+1)].

These 63 polytopes are each shown in these 6 symmetry planes, with vertices and edges drawn, and vertices colored by the number of overlapping vertices in each projective position.
# Coxeter-Dynkin diagram
Coxeter-Dynkin diagram
In geometry, a Coxeter–Dynkin diagram is a graph with numerically labeled edges representing the spatial relations between a collection of mirrors...


Schläfli symbol
Johnson name
Ak orthogonal projection graphs
A7
[8]
A6
[7]
A5
[6]
A4
[5]
A3
[4]
A2
[3]
1
t0{3,3,3,3,3,3}
7-simplex
2
t1{3,3,3,3,3,3}
Rectified 7-simplex
Rectified 7-simplex
In seven-dimensional geometry, a rectified 7-simplex is a convex uniform 7-polytope, being a rectification of the regular 7-simplex.There are four unique degrees of rectifications, including the zeroth, the 7-simplex itself. Vertices of the rectified 7-simplex are located at the edge-centers of the...

3
t2{3,3,3,3,3,3}
Birectified 7-simplex
4
t3{3,3,3,3,3,3}
Trirectified 7-simplex
5
t0,1{3,3,3,3,3,3}
Truncated 7-simplex
Truncated 7-simplex
In seven-dimensional geometry, a truncated 7-simplex is a convex uniform 7-polytope, being a truncation of the regular 7-simplex.There are unique 3 degrees of truncation. Vertices of the truncation 7-simplex are located as pairs on the edge of the 7-simplex. Vertices of the bitruncated 7-simplex...

6
t0,2{3,3,3,3,3,3}
Cantellated 7-simplex
Cantellated 7-simplex
In seven-dimensional geometry, a cantellated 7-simplex is a convex uniform 7-polytope, being a cantellation of the regular 7-simplex.There are unique 6 degrees of cantellation for the 7-simplex, including truncations.- Cantellated 7-simplex:...

7
t1,2{3,3,3,3,3,3}
Bitruncated 7-simplex
8
t0,3{3,3,3,3,3,3}
Runcinated 7-simplex
Runcinated 7-simplex
In seven-dimensional geometry, a runcinated 7-simplex is a convex uniform 7-polytope with 3rd order truncations of the regular 7-simplex.There are 8 unique runcinations of the 7-simplex with permutations of truncations, and cantellations....

9
t1,3{3,3,3,3,3,3}
Bicantellated 7-simplex
10
t2,3{3,3,3,3,3,3}
Tritruncated 7-simplex
11
t0,4{3,3,3,3,3,3}
Stericated 7-simplex
Stericated 7-simplex
In seven-dimensional geometry, a stericated 7-simplex is a convex uniform 7-polytope with 4th order truncations of the regular 7-simplex....

12
t1,4{3,3,3,3,3,3}
Biruncinated 7-simplex
13
t2,4{3,3,3,3,3,3}
Tricantellated 7-simplex
14
t0,5{3,3,3,3,3,3}
Pentellated 7-simplex
Pentellated 7-simplex
In seven-dimensional geometry, a pentellated 7-simplex is a convex uniform 7-polytope with 5th order truncations of the regular 7-simplex....

15
t1,5{3,3,3,3,3,3}
Bistericated 7-simplex
16
t0,6{3,3,3,3,3,3}
Hexicated 7-simplex
Hexicated 7-simplex
In seven-dimensional geometry, a hexicated 7-simplex is a convex uniform 7-polytope, including 6th-order truncations from the regular 7-simplex....

17
t0,1,2{3,3,3,3,3,3}
Cantitruncated 7-simplex
18
t0,1,3{3,3,3,3,3,3}
Runcitruncated 7-simplex
19
t0,2,3{3,3,3,3,3,3}
Runcicantellated 7-simplex
20
t1,2,3{3,3,3,3,3,3}
Bicantitruncated 7-simplex
21
t0,1,4{3,3,3,3,3,3}
Steritruncated 7-simplex
22
t0,2,4{3,3,3,3,3,3}
Stericantellated 7-simplex
23
t1,2,4{3,3,3,3,3,3}
Biruncitruncated 7-simplex
24
t0,3,4{3,3,3,3,3,3}
Steriruncinated 7-simplex
25
t1,3,4{3,3,3,3,3,3}
Biruncicantellated 7-simplex
26
t2,3,4{3,3,3,3,3,3}
Tricantitruncated 7-simplex
27
t0,1,5{3,3,3,3,3,3}
Pentitruncated 7-simplex
28
t0,2,5{3,3,3,3,3,3}
Penticantellated 7-simplex
29
t1,2,5{3,3,3,3,3,3}
Bisteritruncated 7-simplex
30
t0,3,5{3,3,3,3,3,3}
Pentiruncinated 7-simplex
31
t1,3,5{3,3,3,3,3,3}
Bistericantellated 7-simplex
32
t0,4,5{3,3,3,3,3,3}
Pentistericated 7-simplex
33
t0,1,6{3,3,3,3,3,3}
Hexitruncated 7-simplex
34
t0,2,6{3,3,3,3,3,3}
Hexicantellated 7-simplex
35
t0,3,6{3,3,3,3,3,3}
Hexiruncinated 7-simplex
36
t0,1,2,3{3,3,3,3,3,3}
Runcicantitruncated 7-simplex
37
t0,1,2,4{3,3,3,3,3,3}
Stericantitruncated 7-simplex
38
t0,1,3,4{3,3,3,3,3,3}
Steriruncitruncated 7-simplex
39
t0,2,3,4{3,3,3,3,3,3}
Steriruncicantellated 7-simplex
40
t1,2,3,4{3,3,3,3,3,3}
Biruncicantitruncated 7-simplex
41
t0,1,2,5{3,3,3,3,3,3}
Penticantitruncated 7-simplex
42
t0,1,3,5{3,3,3,3,3,3}
Pentiruncitruncated 7-simplex
43
t0,2,3,5{3,3,3,3,3,3}
Pentiruncicantellated 7-simplex
44
t1,2,3,5{3,3,3,3,3,3}
Bistericantitruncated 7-simplex
45
t0,1,4,5{3,3,3,3,3,3}
Pentisteritruncated 7-simplex
46
t0,2,4,5{3,3,3,3,3,3}
Pentistericantellated 7-simplex
47
t1,2,4,5{3,3,3,3,3,3}
Bisteriruncitruncated 7-simplex
48
t0,3,4,5{3,3,3,3,3,3}
Pentisteriruncinated 7-simplex
49
t0,1,2,6{3,3,3,3,3,3}
Hexicantitruncated 7-simplex
50
t0,1,3,6{3,3,3,3,3,3}
Hexiruncitruncated 7-simplex
51
t0,2,3,6{3,3,3,3,3,3}
Hexiruncicantellated 7-simplex
52
t0,1,4,6{3,3,3,3,3,3}
Hexisteritruncated 7-simplex
53
t0,2,4,6{3,3,3,3,3,3}
Hexistericantellated 7-simplex
54
t0,1,5,6{3,3,3,3,3,3}
Hexipentitruncated 7-simplex
55
t0,1,2,3,4{3,3,3,3,3,3}
Steriruncicantitruncated 7-simplex
56
t0,1,2,3,5{3,3,3,3,3,3}
Pentiruncicantitruncated 7-simplex
57
t0,1,2,4,5{3,3,3,3,3,3}
Pentistericantitruncated 7-simplex
58
t0,1,3,4,5{3,3,3,3,3,3}
Pentisteriruncitruncated 7-simplex
59
t0,2,3,4,5{3,3,3,3,3,3}
Pentisteriruncicantellated 7-simplex
60
t1,2,3,4,5{3,3,3,3,3,3}
Bisteriruncicantitruncated 7-simplex
61
t0,1,2,3,6{3,3,3,3,3,3}
Hexiruncicantitruncated 7-simplex
62
t0,1,2,4,6{3,3,3,3,3,3}
Hexistericantitruncated 7-simplex
63
t0,1,3,4,6{3,3,3,3,3,3}
Hexisteriruncitruncated 7-simplex
64
t0,2,3,4,6{3,3,3,3,3,3}
Hexisteriruncicantellated 7-simplex
65
t0,1,2,5,6{3,3,3,3,3,3}
Hexipenticantitruncated 7-simplex
66
t0,1,3,5,6{3,3,3,3,3,3}
Hexipentiruncitruncated 7-simplex
67
t0,1,2,3,4,5{3,3,3,3,3,3}
Pentisteriruncicantitruncated 7-simplex
68
t0,1,2,3,4,6{3,3,3,3,3,3}
Hexisteriruncicantitruncated 7-simplex
69
t0,1,2,3,5,6{3,3,3,3,3,3}
Hexipentiruncicantitruncated 7-simplex
70
t0,1,2,4,5,6{3,3,3,3,3,3}
Hexipentistericantitruncated 7-simplex
71
t0,1,2,3,4,5,6{3,3,3,3,3,3}
Omnitruncated 7-simplex
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK