Magnetic level gauge
Encyclopedia
A magnetic level gauge is used to measure the level of fluids. A magnetic level gauge includes a “floatable” device that can float both in high and low density
fluids. Magnetic level gauges may also be designed to accommodate severe environmental conditions up to 210 bars at 370°C.
. With mechanically-actuated floats, the float is directly connected to a micro switch
. For both magnetic and mechanical float level sensors, chemical compatibility, temperature
, specific gravity
(density), buoyancy
, and viscosity
affect the selection of the stem and the float. For example, larger floats may be used with liquids with specific gravities as low as 0.5 while still maintaining buoyancy. The choice of float material is also influenced by temperature-induced changes in specific gravity and viscosity - changes that directly affect buoyancy.
and engineering
behind this design, we need to take a look at basic magnetism. If we look at a standard bar magnet, there are two magnetic poles - north
and south
. (The north will read positive on a gauss meter and the south will read negative.) In order to map a magnetic field, we look at magnetic flux lines. Magnetic flux
lines are a graphical representation of the magnetic field density. They show the direction of flow for the magnetic field and represent relative field strength - the closer together the lines are, the stronger the magnetic field. Flux lines will always travel from the north pole to the nearest south pole and always leave and enter surfaces at 90°, or perpendicular to the surface. They can only travel in straight lines or curved paths, which means they can never make a sudden, abrupt change in direction. Flux lines will also always follow a path of least magnetic resistance. Most importantly, they can never cross one another.
Density
The mass density or density of a material is defined as its mass per unit volume. The symbol most often used for density is ρ . In some cases , density is also defined as its weight per unit volume; although, this quantity is more properly called specific weight...
fluids. Magnetic level gauges may also be designed to accommodate severe environmental conditions up to 210 bars at 370°C.
Magnetic level sensors
Magnetic float level sensors involve the use of a permanent magnet sealed inside a float whose rise and fall causes the opening or closing of a mechanical switch, either through direct contact or in proximity of a reed switchReed switch
The reed switch is an electrical switch operated by an applied magnetic field. It was invented at Bell Telephone Laboratories in 1936 by W. B. Ellwood. It consists of a pair of contacts on ferrous metal reeds in a hermetically sealed glass envelope...
. With mechanically-actuated floats, the float is directly connected to a micro switch
Micro switch
A miniature snap-action switch, also trademarked and frequently known as a micro switch, is an electric switch that is actuated by very little physical force, through the use of a tipping-point mechanism, sometimes called an "over-center" mechanism. Switching happens reliably at specific and...
. For both magnetic and mechanical float level sensors, chemical compatibility, temperature
Temperature
Temperature is a physical property of matter that quantitatively expresses the common notions of hot and cold. Objects of low temperature are cold, while various degrees of higher temperatures are referred to as warm or hot...
, specific gravity
Specific gravity
Specific gravity is the ratio of the density of a substance to the density of a reference substance. Apparent specific gravity is the ratio of the weight of a volume of the substance to the weight of an equal volume of the reference substance. The reference substance is nearly always water for...
(density), buoyancy
Buoyancy
In physics, buoyancy is a force exerted by a fluid that opposes an object's weight. In a column of fluid, pressure increases with depth as a result of the weight of the overlying fluid. Thus a column of fluid, or an object submerged in the fluid, experiences greater pressure at the bottom of the...
, and viscosity
Viscosity
Viscosity is a measure of the resistance of a fluid which is being deformed by either shear or tensile stress. In everyday terms , viscosity is "thickness" or "internal friction". Thus, water is "thin", having a lower viscosity, while honey is "thick", having a higher viscosity...
affect the selection of the stem and the float. For example, larger floats may be used with liquids with specific gravities as low as 0.5 while still maintaining buoyancy. The choice of float material is also influenced by temperature-induced changes in specific gravity and viscosity - changes that directly affect buoyancy.
Explanation
In order to explore the physicsPhysics
Physics is a natural science that involves the study of matter and its motion through spacetime, along with related concepts such as energy and force. More broadly, it is the general analysis of nature, conducted in order to understand how the universe behaves.Physics is one of the oldest academic...
and engineering
Engineering
Engineering is the discipline, art, skill and profession of acquiring and applying scientific, mathematical, economic, social, and practical knowledge, in order to design and build structures, machines, devices, systems, materials and processes that safely realize improvements to the lives of...
behind this design, we need to take a look at basic magnetism. If we look at a standard bar magnet, there are two magnetic poles - north
North Pole
The North Pole, also known as the Geographic North Pole or Terrestrial North Pole, is, subject to the caveats explained below, defined as the point in the northern hemisphere where the Earth's axis of rotation meets its surface...
and south
South Pole
The South Pole, also known as the Geographic South Pole or Terrestrial South Pole, is one of the two points where the Earth's axis of rotation intersects its surface. It is the southernmost point on the surface of the Earth and lies on the opposite side of the Earth from the North Pole...
. (The north will read positive on a gauss meter and the south will read negative.) In order to map a magnetic field, we look at magnetic flux lines. Magnetic flux
Flux
In the various subfields of physics, there exist two common usages of the term flux, both with rigorous mathematical frameworks.* In the study of transport phenomena , flux is defined as flow per unit area, where flow is the movement of some quantity per time...
lines are a graphical representation of the magnetic field density. They show the direction of flow for the magnetic field and represent relative field strength - the closer together the lines are, the stronger the magnetic field. Flux lines will always travel from the north pole to the nearest south pole and always leave and enter surfaces at 90°, or perpendicular to the surface. They can only travel in straight lines or curved paths, which means they can never make a sudden, abrupt change in direction. Flux lines will also always follow a path of least magnetic resistance. Most importantly, they can never cross one another.