Microvoid coalescence
Encyclopedia
Microvoid coalescence is a high energy microscopic fracture
mechanism observed in the majority of metallic alloys
and in some engineering plastics.
. Microvoid coalescence leads to fracture.
es will result elongated dimples, which are parabolic depressions that coalesce in planes of maximum shear stress. The depressions point back to the crack origin, and shear influenced failure will produce depressions that point in opposite directions on opposing fracture surfaces. Combined tension and bending
will also produce the elongated dimple morphology, but the directions of the depressions will be in the same direction on both fracture surfaces.
Fracture
A fracture is the separation of an object or material into two, or more, pieces under the action of stress.The word fracture is often applied to bones of living creatures , or to crystals or crystalline materials, such as gemstones or metal...
mechanism observed in the majority of metallic alloys
Alloy
An alloy is a mixture or metallic solid solution composed of two or more elements. Complete solid solution alloys give single solid phase microstructure, while partial solutions give two or more phases that may or may not be homogeneous in distribution, depending on thermal history...
and in some engineering plastics.
Fracture process
MVC proceeds in three stages: nucleation, growth, and coalescence of microvoids. The nucleation of microvoids can be caused by particle cracking or interfacial failure between precipitate particles and the matrix. Microvoids grow during plastic flow of the matrix, and microvoids coalesce when adjacent microvoids link together or the material between microvoids experiences neckingNecking (engineering)
Necking, in engineering or materials science, is a mode of tensile deformation where relatively large amounts of strain localize disproportionately in a small region of the material. The resulting prominent decrease in local cross-sectional area provides the basis for the name "neck"...
. Microvoid coalescence leads to fracture.
Fracture surface morphologies
MVC can result in three distinct fracture morphologies based on the type of loading at failure. Tensile loading results in equiaxed dimples, which are spherical depressions a few micrometres in diameter that coalesce normal to the loading axis. Shear stressShear stress
A shear stress, denoted \tau\, , is defined as the component of stress coplanar with a material cross section. Shear stress arises from the force vector component parallel to the cross section...
es will result elongated dimples, which are parabolic depressions that coalesce in planes of maximum shear stress. The depressions point back to the crack origin, and shear influenced failure will produce depressions that point in opposite directions on opposing fracture surfaces. Combined tension and bending
Bending
In engineering mechanics, bending characterizes the behavior of a slender structural element subjected to an external load applied perpendicularly to a longitudinal axis of the element. The structural element is assumed to be such that at least one of its dimensions is a small fraction, typically...
will also produce the elongated dimple morphology, but the directions of the depressions will be in the same direction on both fracture surfaces.