Nucleus Accumbens Shell
Encyclopedia
The nucleus accumbens shell is a structure that, together with the nucleus accumbens core
Nucleus Accumbens Core
The nucleus accumbens core is a structure that, together with the nucleus accumbens shell, makes up the entire nucleus accumbens. The nucleus accumbens is an important area of the brain related to motor function, reward, and emotionality....

, makes up the entire nucleus accumbens
Nucleus accumbens
The nucleus accumbens , also known as the accumbens nucleus or as the nucleus accumbens septi , is a collection of neurons and forms the main part of the ventral striatum...

. The nucleus accumbens is an important area of the brain related to motor function, reward, and emotionality.

Location: The shell of the nucleus accumbens is located in the rostral pole of extended amygdala.

Cell types: Neurons in the Nucleus Accumbens (NAc) are mostly medium spiny neurons. The neurons in the shell, as compared to the core, have a lower density of dendritic spines, less terminal segments, and less branch segments than those in the core. The shell neurons project to the subcommissural part of the ventral pallidum as well as the ventral tegmental area and to a extensive areas in the hypothalamus and extended amygdala.
Function: The shell of the nucleus accumbens plays a role in regulating motivation, reward, and psychiatric disorders related to improper regulation of these qualities. Particularly important are the effects of drug and food stimuli on the NAc shell because these effects are related to addiction and behavioral inhibition.

Hormones:

Dopamine: Dopamine is related to drugs of abuse like amphetamines, cocaine, and morphine, which increase extracellular levels of dopamine in both the NAc shell and the NAc core, but the effect of these increases is more pronounced in the shell. Only amphetamine at high levels increased extracellular levels of dopamine to similar levels in both the shell and the core. All of this points to a 'functional heterogeneity' in the nucleus accumbens between the shell region and the core region.
Similarly to drug rewards, non-drug rewards also increase levels of extracellular dopamine in the NAc shell, but drug induced DA increase is more resilient to habituation when exposed repeatedly to drug-stimuli, unlike non-drug rewarding stimuli induced dopamine increases, which do succumb to habituation. Recent studies have shown that the repeated influence of drug-inducing DA projection has an abnormal strengthening effect on stimulus-drug associations and increases the drug-reward stimuli’s resistance to extinction. This may be a contributing factor to addiction. This effect was more pronounced in the NAc shell than in the NAc core. (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2475798/)

Glucocorticoids and Dopamine: Glucocorticoid receptors are the only corticosteroid receptors in the nucleus accumbens shell. L-DOPA, steroids, and specifically glucocorticoids are currently known to be the only known endogenous compounds that can induce psychotic problems, so understanding the hormonal control over dopaminergic projections with regards to glucocorticoid receptors could lead to new treatments for psychotic symptoms. A recent study demonstrated that suppression of the glucocorticoid receptors led to a decrease in the release of dopamine, which may lead to future research involving anti-glucocorticoid drugs to potentially relieve psychotic symptoms.

GABA: A recent study on rats that used GABA agonists and antagonists indicated that GABAA receptors in the NAc shell have inhibitory control on turning behavior influenced by dopamine, and GABAB receptors in the have inhibitory control over turning behavior mediated by acetylcholine.

Serotonin (5-HT): Overall, 5-HT synapses are more abundant and have a greater amount of synaptic contacts in the NAc shell than in the core. They are also larger, thicker, and contain more large dense core vesicles than their counterparts in the core.
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK