Projective texture mapping
Encyclopedia
Projective texture mapping is a method of texture mapping
Texture mapping
Texture mapping is a method for adding detail, surface texture , or color to a computer-generated graphic or 3D model. Its application to 3D graphics was pioneered by Dr Edwin Catmull in his Ph.D. thesis of 1974.-Texture mapping:...

 that allows a textured image to be projected onto a scene as if by a slide projector
Slide projector
A slide projector is an opto-mechanical device to view photographic slides. Slide projectors were common in the 1950s to the 1970s as a form of entertainment; family members and friends would gather to view slide shows...

. Projective texture mapping is useful in a variety of lighting techniques and it is the starting point for shadow mapping
Shadow mapping
Shadow mapping or projective shadowing is a process by which shadows are added to 3D computer graphics. This concept was introduced by Lance Williams in 1978, in a paper entitled "Casting curved shadows on curved surfaces"...

.

Projective texture mapping is essentially a special matrix
Matrix (mathematics)
In mathematics, a matrix is a rectangular array of numbers, symbols, or expressions. The individual items in a matrix are called its elements or entries. An example of a matrix with six elements isMatrices of the same size can be added or subtracted element by element...

 transformation which is performed per-vertex and then linearly interpolated as standard texture mapping.

Fixed function pipeline approach

Historically, using projective texture mapping involved considering a special form of eye linear texture coordinate generation transform (tcGen for short). This transform was then multiplied by another matrix representing the projector's properties which was stored in texture coordinate transform matrix. The resulting concatenated matrix was basically a function of both projector properties and vertex eye positions.

The key points of this approach are that eye linear tcGen is a function of vertex eye coordinates, which is a result of both eye properties and object space vertex coordinates (more specifically, the object space vertex position is transformed by the model-view-projection matrix).
Because of that, the corresponding texture matrix can be used to "shift" the eye properties so the concatenated result is the same as using an eye linear tcGen from a point of view which can be different from the observer.

Programmable pipeline approach

A less involved method to compute this approach became possible with vertex shaders. Readers are encouraged to check this method is essentially the same as before.
For readers not familiar with this newer graphics technology, this feature allows to override the default vertex and pixel processing allowing a user defined program to be used.

The previous algorithm can then be reformulated by simply considering two model-view-projection matrices: one from the eye point of view and the other from the projector point of view.

In this case, the projector model-view-projection matrix is essentially the aforementioned concatenation of eye-linear tcGen with the intended projector shift function.
By using those two matrices, a few instructions are sufficient to output the transformed eye space vertex position and a projective texture coordinate. This coordinate is simply obtained by considering the projector's model-view-projection matrix: in other words, this is the eye-space vertex position if the considered projector would have been an observer.

Caveats

In both the proposed approaches there are two little problems which can be trivially solved and comes from the different conventions used by eye space and texture space.

Defining properties of those spaces is beyond the scope of this article but it's well known that textures should usually be addressed in the range [0..1] while eye space coordinates are addressed in the range [-1..1].
According to the used texture wrap mode various artifacts may occur but it's obvious a shift and scale operation is definitely necessary to get the expected result.

The other problem is actually a mathematical issue. It is well known the matrix math used produces a back projection. This artifact has historically been avoided by using a special black and white texture to cut away unnecessary projecting contributions. Using pixel shaders a different approach can be used: a coordinate check is sufficient to discriminate between forward (correct) contributions and backward (wrong, to be avoided) ones.

External Links

  • http://www.3dkingdoms.com/weekly/weekly.php?a=20 A tutorial showing how to implement projective texturing using the programmable pipeline approach in OpenGL.
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK