Quasi-Fuchsian group
Encyclopedia
In the mathematical theory of Kleinian group
Kleinian group
In mathematics, a Kleinian group is a discrete subgroup of PSL. The group PSL of 2 by 2 complex matrices of determinant 1 modulo its center has several natural representations: as conformal transformations of the Riemann sphere, and as orientation-preserving isometries of 3-dimensional hyperbolic...

s, a quasi-Fuchsian group is a Kleinian group whose limit set
Kleinian group
In mathematics, a Kleinian group is a discrete subgroup of PSL. The group PSL of 2 by 2 complex matrices of determinant 1 modulo its center has several natural representations: as conformal transformations of the Riemann sphere, and as orientation-preserving isometries of 3-dimensional hyperbolic...

 is contained in an invariant Jordan curve. If the limit set is equal to the Jordan curve the quasi-Fuchsian group is said to be of type one, and otherwise it is said to be of type two. Some authors use "quasi-Fuchsian group" to mean "quasi-Fuchsian group of type 1", in other words the limit set is the whole Jordan curve. This terminology is incompatible with the use of the terms "type 1" and "type 2" for Kleinian groups: all quasi-Fuchsian groups are Kleinian groups of type 2 (even if they are quasi-Fuchsian groups of type 1), as their limit sets are proper subsets of the Riemann sphere. The special case when the Jordan curve is a circle or line is called a Fuchsian group
Fuchsian group
In mathematics, a Fuchsian group is a discrete subgroup of PSL. The group PSL can be regarded as a group of isometries of the hyperbolic plane, or conformal transformations of the unit disc, or conformal transformations of the upper half plane, so a Fuchsian group can be regarded as a group acting...

, named for Lazarus Fuchs
Lazarus Fuchs
Lazarus Immanuel Fuchs was a German mathematician who contributed important research in the field of linear differential equations...

.

Finitely generated quasi-Fuchsian groups are conjugate to Fuchsian groups under quasi-conformal transformations.

The space of quasi-Fuchsian groups of the first kind is described by the simultaneous uniformization theorem
Simultaneous uniformization theorem
In mathematics, the simultaneous uniformization theorem, proved by , states that it is possible to simultaneously uniformize two different Riemann surfaces of the same genus using a quasi-Fuchsian group of the first kind....

of Bers.

External links

The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK