RNA-dependent RNA polymerase
Encyclopedia
RNA-dependent RNA polymerase (RdRP), (RDR), or RNA replicase, is an enzyme
that catalyzes the replication
of RNA
from an RNA template. This is in contrast to a typical DNA-dependent RNA polymerase
, which catalyzes the transcription
of RNA from a DNA
template.
RNA-dependent RNA polymerase (RdRp) is an essential protein encoded in the genomes of all RNA-containing viruses with no DNA stage. It catalyses synthesis of the RNA strand complementary to a given RNA template. The RNA replication process is a two-step mechanism. First, the initiation step of RNA synthesis begins at or near the 3' end of the RNA template by means of a primer-independent (de novo), or a primer-dependent mechanism that utilizes a viral protein genome-linked (VPg) primer. The de novo initiation consists in the addition of a nucleotide tri-phosphate (NTP) to the 3'-OH of the first initiating NTP. During the following so-called elongation phase, this nucleotidyl transfer reaction is repeated with subsequent NTPs to generate the complementary RNA product.
primer mechanism is utilized by the picornavirus (poty-, como-, calici- and others) and picornavirus-like (coronavirus, notavirus, etc.)supergroup of RNA viruses. Primer-dependent RNA synthesis utilizes a small 2- to 3-kilodalton viral protein to initiate polymerase activity. The viral protein genome-linked (VPg) primer is covalently bound to the 5’ end of the RNA template. VPg facilitates synthesis at the 3’ end of the template by utilizing uridylylation to bind RdRp and initiate elongation. The uridylylation occurs at a tyrosine residue at the third position of the VPg. A cis-acting replication element (CRE), which is a RNA stem loop structure, serves as a template for the uridylylation of VPg, resulting in the synthesis of VPgpUpUOH. Mutations within the CRE-RNA structure prevent VPg uridylylation, and mutations within the VPg sequence can severely diminish RdRp catalytic activity. While the tyrosine hydroxyl of VPg can prime negative-strand RNA synthesis in a CRE- and VPgpUpUOH-independent manner, CRE-dependent VPgpUpUOH synthesis is absolutely required for positive-strand RNA synthesis. CRE-dependent VPg uridylylation lower s the Km¬ of UTP required for viral RNA replication and CRE-dependent VPgpUpUOH synthesis, and is required for efficient negative-strand RNA synthesis, especially when UTP concentrations are limiting. The VPgpUpUOH primer is transferred to the 3’ end of the RNA template for elongation, which can continue by addition of nucleotide bases by RdRp.
VPg uridylylation may include the use of precursor proteins, allowing for the determination of a possible mechanism for the location of the diuridylylated, VPg-containing precursor at the 3’ end of plus- or minus-strand RNA for production of full-length RNA. Determinants of VPg uridylylation efficiency suggest formation and/or collapse or release of the uridylylated product as the rate-limiting step in vitro depending upon the VPg donor employed. Precursor proteins also have an affect on VPg-CRE specificity and stability. The upper RNA stem loop, to which VPg binds, has a significant impact on both retention, and recruitment, of VPg and Pol. The stem loop of CRE will partially unwind, allowing the precursor components to bind and recruit VPg and Pol4. The CRE loop has a defined consensus sequence to which the initiation components bind, however; there is no consensus sequence for the supporting stem, which suggests that only the structural stability of the CRE is important.
Assembly and organization of the picornavirus VPg ribonucleoprotein complex.
Step 1: Two 3CD (VPg complex) molecules bind to CRE with the 3C domains (VPg domain) contacting the upper stem and the 3D domains (VPg domain) contacting the lower stem.
Step 2: The 3C dimer opens the RNA stem by forming a more stable interaction with single strands forming the stem.
Step 3: 3Dpol is recruited to and retained in this complex by a physical interaction between the back of the thumb subdomain of 3Dpol and a surface of one or both 3C subdomains of 3CD.
VPg may also play an important role in specific recognition of viral genome by movement protein (MP). Movement proteins are non-structural proteins encoded by many, if not all, plant viruses to enable their movement from one infected cell to neighboring cells. MP and VPg interact to provide specificity for the transport of viral RNA from cell to cell. To fulfill energy requirements, MP also interacts with P10, which is a cellular ATPase.
RdRPs were discovered in the early 1960s from studies on mengovirus and polio virus when it was observed that these viruses were not sensitive to actinomycin D, a drug that inhibits cellular DNA-directed RNA synthesis. This lack of sensitivity suggested that there is a virus-specific enzyme that could copy RNA from an RNA template and not from a DNA template.
The most famous example of RdRP is the polio virus. The virus is made up of RNA, which enters the cell through receptor-mediated endocytosis
. From there, the RNA is able to act as a template for complementary RNA synthesis, immediately. The complementary strand is then, itself, able to act as a template for the production of new viral genomes that are further packaged and released from the cell ready to infect more host cells. The advantage of this method of replication is that there is no DNA stage; replication is quick and easy. The disadvantage is that there is no 'back-up' DNA copy.
Many RdRPs are associated tightly with membranes and are, therefore, difficult to study. The best-known RdRPs are polioviral 3Dpol, vesicular stomatitis virus L, and hepatitis C virus
NS5b protein.
Many eukaryote
s also have RdRPs involved in RNA interference
; these amplify microRNAs and small temporal RNAs and produce double-stranded RNA using small interfering RNA
s as primers. but in fact these same RdRPs that are used in the defense mechanisms can be usurped by RNA viruses for their benefit.
Deep sequencing of seawater has shown that RdRps are highly conserved throughout viruses and is even related to telomerase
, though the reason for such high conservation in such diverse organisms is an ongoing question as of 2009. The similarity has led to speculation that viral RdRps are ancestral to human telomerase.
The RNA-directed RNA polymerases in the first of the above superfamilies can be divided into the following three subgroups:
Flaviviruses produce a polyprotein from the ssRNA genome. The polyprotein is cleaved to a number of products, one of which is NS5. Recombinant dengue type 1 virus NS5 protein expressed in Escherichia coli
exhibits RNA-dependent RNA polymerase activity. This RNA-directed RNA polymerase possesses a number of short regions and motifs homologous to other RNA-directed RNA polymerases.
Enzyme
Enzymes are proteins that catalyze chemical reactions. In enzymatic reactions, the molecules at the beginning of the process, called substrates, are converted into different molecules, called products. Almost all chemical reactions in a biological cell need enzymes in order to occur at rates...
that catalyzes the replication
Self-replication
Self-replication is any behavior of a dynamical system that yields construction of an identical copy of that dynamical system. Biological cells, given suitable environments, reproduce by cell division. During cell division, DNA is replicated and can be transmitted to offspring during reproduction...
of RNA
RNA
Ribonucleic acid , or RNA, is one of the three major macromolecules that are essential for all known forms of life....
from an RNA template. This is in contrast to a typical DNA-dependent RNA polymerase
RNA polymerase
RNA polymerase is an enzyme that produces RNA. In cells, RNAP is needed for constructing RNA chains from DNA genes as templates, a process called transcription. RNA polymerase enzymes are essential to life and are found in all organisms and many viruses...
, which catalyzes the transcription
Transcription (genetics)
Transcription is the process of creating a complementary RNA copy of a sequence of DNA. Both RNA and DNA are nucleic acids, which use base pairs of nucleotides as a complementary language that can be converted back and forth from DNA to RNA by the action of the correct enzymes...
of RNA from a DNA
DNA
Deoxyribonucleic acid is a nucleic acid that contains the genetic instructions used in the development and functioning of all known living organisms . The DNA segments that carry this genetic information are called genes, but other DNA sequences have structural purposes, or are involved in...
template.
RNA-dependent RNA polymerase (RdRp) is an essential protein encoded in the genomes of all RNA-containing viruses with no DNA stage. It catalyses synthesis of the RNA strand complementary to a given RNA template. The RNA replication process is a two-step mechanism. First, the initiation step of RNA synthesis begins at or near the 3' end of the RNA template by means of a primer-independent (de novo), or a primer-dependent mechanism that utilizes a viral protein genome-linked (VPg) primer. The de novo initiation consists in the addition of a nucleotide tri-phosphate (NTP) to the 3'-OH of the first initiating NTP. During the following so-called elongation phase, this nucleotidyl transfer reaction is repeated with subsequent NTPs to generate the complementary RNA product.
VPg
The VPgVPg
VPg is a protein attached to the 5' end of RNA during RNA synthesis in a wide variety of viruses including Picornaviridae such as Foot-and-mouth disease and poliovirus . VPg stands for "viral protein genome-linked".-Attachment during RNA synthesis:...
primer mechanism is utilized by the picornavirus (poty-, como-, calici- and others) and picornavirus-like (coronavirus, notavirus, etc.)supergroup of RNA viruses. Primer-dependent RNA synthesis utilizes a small 2- to 3-kilodalton viral protein to initiate polymerase activity. The viral protein genome-linked (VPg) primer is covalently bound to the 5’ end of the RNA template. VPg facilitates synthesis at the 3’ end of the template by utilizing uridylylation to bind RdRp and initiate elongation. The uridylylation occurs at a tyrosine residue at the third position of the VPg. A cis-acting replication element (CRE), which is a RNA stem loop structure, serves as a template for the uridylylation of VPg, resulting in the synthesis of VPgpUpUOH. Mutations within the CRE-RNA structure prevent VPg uridylylation, and mutations within the VPg sequence can severely diminish RdRp catalytic activity. While the tyrosine hydroxyl of VPg can prime negative-strand RNA synthesis in a CRE- and VPgpUpUOH-independent manner, CRE-dependent VPgpUpUOH synthesis is absolutely required for positive-strand RNA synthesis. CRE-dependent VPg uridylylation lower s the Km¬ of UTP required for viral RNA replication and CRE-dependent VPgpUpUOH synthesis, and is required for efficient negative-strand RNA synthesis, especially when UTP concentrations are limiting. The VPgpUpUOH primer is transferred to the 3’ end of the RNA template for elongation, which can continue by addition of nucleotide bases by RdRp.
VPg uridylylation may include the use of precursor proteins, allowing for the determination of a possible mechanism for the location of the diuridylylated, VPg-containing precursor at the 3’ end of plus- or minus-strand RNA for production of full-length RNA. Determinants of VPg uridylylation efficiency suggest formation and/or collapse or release of the uridylylated product as the rate-limiting step in vitro depending upon the VPg donor employed. Precursor proteins also have an affect on VPg-CRE specificity and stability. The upper RNA stem loop, to which VPg binds, has a significant impact on both retention, and recruitment, of VPg and Pol. The stem loop of CRE will partially unwind, allowing the precursor components to bind and recruit VPg and Pol4. The CRE loop has a defined consensus sequence to which the initiation components bind, however; there is no consensus sequence for the supporting stem, which suggests that only the structural stability of the CRE is important.
Assembly and organization of the picornavirus VPg ribonucleoprotein complex.
Step 1: Two 3CD (VPg complex) molecules bind to CRE with the 3C domains (VPg domain) contacting the upper stem and the 3D domains (VPg domain) contacting the lower stem.
Step 2: The 3C dimer opens the RNA stem by forming a more stable interaction with single strands forming the stem.
Step 3: 3Dpol is recruited to and retained in this complex by a physical interaction between the back of the thumb subdomain of 3Dpol and a surface of one or both 3C subdomains of 3CD.
VPg may also play an important role in specific recognition of viral genome by movement protein (MP). Movement proteins are non-structural proteins encoded by many, if not all, plant viruses to enable their movement from one infected cell to neighboring cells. MP and VPg interact to provide specificity for the transport of viral RNA from cell to cell. To fulfill energy requirements, MP also interacts with P10, which is a cellular ATPase.
History
ViralVirus
A virus is a small infectious agent that can replicate only inside the living cells of organisms. Viruses infect all types of organisms, from animals and plants to bacteria and archaea...
RdRPs were discovered in the early 1960s from studies on mengovirus and polio virus when it was observed that these viruses were not sensitive to actinomycin D, a drug that inhibits cellular DNA-directed RNA synthesis. This lack of sensitivity suggested that there is a virus-specific enzyme that could copy RNA from an RNA template and not from a DNA template.
The most famous example of RdRP is the polio virus. The virus is made up of RNA, which enters the cell through receptor-mediated endocytosis
Endocytosis
Endocytosis is a process by which cells absorb molecules by engulfing them. It is used by all cells of the body because most substances important to them are large polar molecules that cannot pass through the hydrophobic plasma or cell membrane...
. From there, the RNA is able to act as a template for complementary RNA synthesis, immediately. The complementary strand is then, itself, able to act as a template for the production of new viral genomes that are further packaged and released from the cell ready to infect more host cells. The advantage of this method of replication is that there is no DNA stage; replication is quick and easy. The disadvantage is that there is no 'back-up' DNA copy.
Many RdRPs are associated tightly with membranes and are, therefore, difficult to study. The best-known RdRPs are polioviral 3Dpol, vesicular stomatitis virus L, and hepatitis C virus
Hepatitis C virus
Hepatitis C virus is a small , enveloped, positive-sense single-stranded RNA virus of the family Flaviviridae...
NS5b protein.
Many eukaryote
Eukaryote
A eukaryote is an organism whose cells contain complex structures enclosed within membranes. Eukaryotes may more formally be referred to as the taxon Eukarya or Eukaryota. The defining membrane-bound structure that sets eukaryotic cells apart from prokaryotic cells is the nucleus, or nuclear...
s also have RdRPs involved in RNA interference
RNA interference
RNA interference is a process within living cells that moderates the activity of their genes. Historically, it was known by other names, including co-suppression, post transcriptional gene silencing , and quelling. Only after these apparently unrelated processes were fully understood did it become...
; these amplify microRNAs and small temporal RNAs and produce double-stranded RNA using small interfering RNA
Small interfering RNA
Small interfering RNA , sometimes known as short interfering RNA or silencing RNA, is a class of double-stranded RNA molecules, 20-25 nucleotides in length, that play a variety of roles in biology. The most notable role of siRNA is its involvement in the RNA interference pathway, where it...
s as primers. but in fact these same RdRPs that are used in the defense mechanisms can be usurped by RNA viruses for their benefit.
Deep sequencing of seawater has shown that RdRps are highly conserved throughout viruses and is even related to telomerase
Telomerase
Telomerase is an enzyme that adds DNA sequence repeats to the 3' end of DNA strands in the telomere regions, which are found at the ends of eukaryotic chromosomes. This region of repeated nucleotide called telomeres contains non-coding DNA material and prevents constant loss of important DNA from...
, though the reason for such high conservation in such diverse organisms is an ongoing question as of 2009. The similarity has led to speculation that viral RdRps are ancestral to human telomerase.
3D structure
All the RNA-directed RNA polymerases, and many DNA-directed polymerases, employ a fold whose organization has been likened to the shape of a right hand with three subdomains termed fingers, palm, and thumb. Only the palm subdomain, composed of a four-stranded antiparallel beta-sheet with two alpha-helices, is well conserved among all of these enzymes. In RdRp, the palm subdomain comprises three well-conserved motifs (A, B, and C). Motif A (D-x(4,5)-D) and motif C (GDD) are spatially juxtaposed; the Asp residues of these motifs are implied in the binding of Mg2+ and/or Mn2+. The Asn residue of motif B is involved in selection of ribonucleoside triphosphates over dNTPs and, thus, determines whether RNA rather than DNA is synthesized. The domain organization and the 3D structure of the catalytic centre of a wide range of RdPps, even those with a low overall sequence homology, are conserved. The catalytic centre is formed by several motifs containing a number of conserved amino acid residues.Classification
There are 4 superfamilies of viruses that cover all RNA-containing viruses with no DNA stage:- Viruses containing positive-strand RNA or double-strand RNA, except retroviruses and Birnaviridae: viral RNA-directed RNA polymerases including all positive-strand RNA viruses with no DNA stage, double-strand RNA viruses, and the Cystoviridae, Reoviridae, Hypoviridae, Partitiviridae, Totiviridae families
- Mononegavirales (negative-strand RNA viruses with non-segmented genomes)
- Negative-strand RNA viruses with segmented genomes, i.e., Orthomyxoviruses (including influenza A, B, and C viruses, Thogotoviruses, and the infectious salmon anemia virus), Arenaviruses, Bunyaviruses, Hantaviruses, Nairoviruses, Phleboviruses, Tenuiviruses and Tospoviruses
- Birnaviridae family of dsRNA viruses.
The RNA-directed RNA polymerases in the first of the above superfamilies can be divided into the following three subgroups:
- All positive-strand RNA eukaryotic viruses with no DNA stage
- All RNA-containing bacteriophages -there are two families of RNA-containing bacteriophages: Leviviridae (positive ssRNA phages) and Cystoviridae (dsRNA phages)
- Reoviridae family of dsRNA viruses.
Flaviviruses produce a polyprotein from the ssRNA genome. The polyprotein is cleaved to a number of products, one of which is NS5. Recombinant dengue type 1 virus NS5 protein expressed in Escherichia coli
Escherichia coli
Escherichia coli is a Gram-negative, rod-shaped bacterium that is commonly found in the lower intestine of warm-blooded organisms . Most E. coli strains are harmless, but some serotypes can cause serious food poisoning in humans, and are occasionally responsible for product recalls...
exhibits RNA-dependent RNA polymerase activity. This RNA-directed RNA polymerase possesses a number of short regions and motifs homologous to other RNA-directed RNA polymerases.