Required Navigation Performance
Encyclopedia
Required Navigation Performance (RNP) is a type of performance-based navigation (PBN) that allows an aircraft to fly a specific path between two 3-dimensionally defined points in space. RNAV
and RNP systems are fundamentally similar. The key difference between them is the requirement for on-board performance monitoring and alerting. A navigation specification that includes a requirement for on-board navigation performance monitoring and alerting is referred to as an RNP specification. One not having such a requirement is referred to as an RNAV specification.
RNP also refers to the level of performance required for a specific procedure or a specific block of airspace. An RNP of 10 means that a navigation system must be able to calculate its position to within a circle with a radius of 10 nautical miles. An RNP of .3 means the aircraft navigation system must be able to calculate its position to within a circle with a radius of 3 tenths of a nautical mile.
A related term is ANP which stands for "actual navigation performance". ANP refers to the current performance of a navigation system while "RNP" refers to the accuracy required for a given block of airspace or a specific instrument procedure.
Some oceanic airspace has an RNP of 4 or 10. The level of RNP an aircraft is capable of determines the separation required between aircraft.
RNP approaches with RNP values currently down to .1 allow aircraft to follow precise 3 dimensional curved flight paths through congested airspace, around noise sensitive areas, or through difficult terrain.
In 1996, Alaska Airlines
became the first airline in the world to utilize an RNP approach with its approach down the Gastineau Channel
into Juneau, Alaska. Alaska Airlines Captain Steve Fulton and Captain Hal Anderson developed more than 30 RNP approaches for the airline's Alaska operations. In 2003 they founded Naverus which is the world leader in helping deploy RNP and other PBN systems worldwide. In 2005, Alaska Airlines became the first airline to utilize RNP approaches into Reagan National Airport to avoid congestion. In April 2009, Alaska Airlines became the first airline to gain approval from the FAA to validate their own RNP approaches. On April 6, 2010, Southwest Airlines
converted to RNP.
In October 2011 Boeing, Lion Air and the Indonesian Directorate General of Civil Aviation, performed validation flights to test tailor-made Required Navigation Performance Authorization Required (RNP AR) procedures at 2 terrain challenged airports, Ambon and Manado
, Indonesia
as pioneering the use of RNP precision navigation technology in South Asia.
The performance monitoring and alerting capabilities may be provided in different forms depending on the system installation, architecture and configurations, including:
An RNP system utilises its navigation sensors, system architecture and modes of operation to satisfy the RNP navigation specification requirements. It must perform the integrity and reasonableness checks of the sensors and data, and may provide a means to deselect specific types of navigation aids to prevent reversion to an inadequate sensor. RNP requirements may limit the modes of operation of the aircraft, e.g. for low RNP, where flight technical error (FTE) is a significant factor, manual flight by the crew may not be allowed. Dual system/sensor installations may also be required depending on the intended operation or need.
An RNAV system capable of achieving the performance requirements of an RNP specification is referred to as an RNP system. Because specific performance requirements are defined for each navigation specification, an aircraft approved for a RNP specification is not automatically approved for all RNAV specifications. Similarly, an aircraft approved for an RNP or RNAV specification having stringent accuracy requirements is not automatically approved for a navigation specification having a less stringent accuracy requirement.
(ICAO Doc 8168), which became applicable in 1998. These RNP procedures were the predecessor of the current PBN concept, whereby the performance for operation on the route is defined, in lieu of l flight elements such as flyover procedures, variability in flight paths, and added airspace buffer resulted in no significant advantages being achieved in designs. As a result, there was a lack of benefits to the user community and little or no implementation.
ic, remote, en-route
and terminal operations, an RNP specification is designated as RNP X, e.g. RNP 4..
Approach navigation specifications cover all segments of the instrument approach
. RNP specifications are designated using RNP as a prefix and an abbreviated textual suffix, e.g. RNP APCH (for RNP approach)or RNP AR APCH (for RNP authorisation required approach).
The net effect of RNP navigation specifications is to provide bounding of the TSE distribution. Since path definition error is assumed to be negligible, the monitoring requirement is reduced to the other two components of TSE, i.e. flight technical error (FTE) and navigation system error (NSE). It is assumed that FTE is an ergodic stochastic process within a given flight control mode. As a result, the FTE distribution is constant over time within a given flight control mode. However, in contrast, the NSE distribution varies over time due to a number of changing characteristics, most notably:
Typically, the 10−5 TSE requirement provides a greater restriction on performance. For example, with any system that has TSE with a normal distribution of cross-track error, the 10−5 monitoring requirement constrains the standard deviation to be 2 x (accuracy value)/4.45 = accuracy value/2.23, while the 95% requirement would have allowed the standard deviation to be as large as the accuracy value/1.96.
It is important to understand that while these characteristics define minimum requirements that must be met, they do not define the actual TSE distribution. The actual TSE distribution may be expected to be typically better than the requirement, but there must be evidence on the actual performance if a lower TSE value is to be used.
In applying the performance monitoring requirement to aircraft, there can be significant variability in how individual errors are managed:
It is important that performance monitoring is not regarded as error monitoring. A performance monitoring alert will be issued when the system cannot guarantee, with sufficient integrity, that the position meets the accuracy requirement. When such an alert is issued, the probable reason is the loss of capability to validate the position data (insufficient satellites being a potential reason). For such a situation, the most likely position of the aircraft at that time is exactly the same position indicated on the pilot display. Assuming the desired track has been flown correctly, the FTE would be within the required limits and therefore the likelihood of the TSE exceeding twice the accuracy value just prior to the alert is approximately 10−5. However, it cannot be assumed that simply because there is no alert the TSE is less than twice the accuracy value: the TSE can be larger. An example is for those aircraft that account for the FTE based on a fixed error distribution: for such systems, if the FTE grows large, no alert is issued by the system even when the TSE is many times larger than the accuracy value. For this reason, the operational procedures to monitor the FTE are important.
(MID) and Europe
an (EUR) regions, but as of 2008, it is designated as B-RNAV (Basic RNAV in Europe and RNP 5 in the Middle East). In the United States
, RNAV 2 supports en-route continental airspace. At present, continental RNAV applications support airspace specifications which include radar
surveillance and direct controller-to-pilot voice
communications.
, intermediate final
and missed approach
. They will increasingly call for RNP specifications requiring a navigation accuracy of 0.3 NM to 0.1 NM or lower. Typically, three sorts of RNP applications are characteristic of this phase of flight: new procedures to runways never served by an instrument procedure, procedures either replacing or serving as backup to existing instrument procedures based on different technologies, and procedures developed to enhance airport access in demanding environments (RNP APCH and RNP AR APCH).
RNP approaches to 0.3 NM and 0.1 NM at Queenstown Airport in New Zealand are the primary approaches used by Qantas and Air New Zealand for both international and domestic services. Due to terrain restrictions, ILS approaches are not possible, and conventional VOR/DME approaches have descent restrictions more than 2,000 ft above the airport level. The RNP approaches and departures follow curved paths below terrain level.
RNP approaches include capabilities that require special aircraft and aircrew authorization similar to category II/III ILS operations. All RNP SAAAR approaches have reduced lateral obstacle evaluation areas and vertical obstacle clearance surfaces predicated on the aircraft and aircrew performance requirements. In addition, there are two characteristics used for selected procedures as necessary, where operators can be authorized for any subset of these characteristics:
When conducting an RNP SAAAR approach using a line of minima less than RNP 0.3, no single-point-of-failure can cause the loss of guidance compliant with the RNP value associated with the approach. Typically, the aircraft must have at least dual GNSS sensors. dual flight management systems, dual air data systems, dual autopilots, and a single inertial reference unit.
When conducting an RNP SAAAR approach with a missed approach less than RNP 1.0, no single-point-of-failure can cause the loss of guidance compliant with the RNP value associated with a missed approach procedure. Typically, the aircraft must have at least dual GNSS sensors, dual flight management systems, dual air data systems, dual autopilots, and a single inertial reference unit.
Area navigation
Area Navigation is a method of Instrument Flight Rules navigation that allows an aircraft to choose any course within a network of navigation beacons, rather than navigating directly to and from the beacons. This can conserve flight distance, reduce congestion, and allow flights into airports...
and RNP systems are fundamentally similar. The key difference between them is the requirement for on-board performance monitoring and alerting. A navigation specification that includes a requirement for on-board navigation performance monitoring and alerting is referred to as an RNP specification. One not having such a requirement is referred to as an RNAV specification.
RNP also refers to the level of performance required for a specific procedure or a specific block of airspace. An RNP of 10 means that a navigation system must be able to calculate its position to within a circle with a radius of 10 nautical miles. An RNP of .3 means the aircraft navigation system must be able to calculate its position to within a circle with a radius of 3 tenths of a nautical mile.
A related term is ANP which stands for "actual navigation performance". ANP refers to the current performance of a navigation system while "RNP" refers to the accuracy required for a given block of airspace or a specific instrument procedure.
Some oceanic airspace has an RNP of 4 or 10. The level of RNP an aircraft is capable of determines the separation required between aircraft.
RNP approaches with RNP values currently down to .1 allow aircraft to follow precise 3 dimensional curved flight paths through congested airspace, around noise sensitive areas, or through difficult terrain.
In 1996, Alaska Airlines
Alaska Airlines
Alaska Airlines is an airline based in the Seattle suburb of SeaTac, Washington in the United States. The airline originated in 1932 as McGee Airways. After many mergers with and acquisitions of other airlines, including Star Air Service, it became known as Alaska Airlines in 1944...
became the first airline in the world to utilize an RNP approach with its approach down the Gastineau Channel
Gastineau Channel
Gastineau Channel is a channel between the mainland of the U.S. state of Alaska and Douglas Island in the Alexander Archipelago of southeastern Alaska. It separates Juneau on the mainland side from Douglas , on Douglas Island. The first European to sight the channel was Joseph Whidbey early in...
into Juneau, Alaska. Alaska Airlines Captain Steve Fulton and Captain Hal Anderson developed more than 30 RNP approaches for the airline's Alaska operations. In 2003 they founded Naverus which is the world leader in helping deploy RNP and other PBN systems worldwide. In 2005, Alaska Airlines became the first airline to utilize RNP approaches into Reagan National Airport to avoid congestion. In April 2009, Alaska Airlines became the first airline to gain approval from the FAA to validate their own RNP approaches. On April 6, 2010, Southwest Airlines
Southwest Airlines
Southwest Airlines Co. is an American low-cost airline based in Dallas, Texas. Southwest is the largest airline in the United States, based upon domestic passengers carried,...
converted to RNP.
In October 2011 Boeing, Lion Air and the Indonesian Directorate General of Civil Aviation, performed validation flights to test tailor-made Required Navigation Performance Authorization Required (RNP AR) procedures at 2 terrain challenged airports, Ambon and Manado
Manado
Manado is the capital of the North Sulawesi province of Indonesia. Manado is located at the Bay of Manado, and is surrounded by a mountainous area. The city has about 405,715 inhabitants, making it the second-largest city in Sulawesi after Makassar...
, Indonesia
Indonesia
Indonesia , officially the Republic of Indonesia , is a country in Southeast Asia and Oceania. Indonesia is an archipelago comprising approximately 13,000 islands. It has 33 provinces with over 238 million people, and is the world's fourth most populous country. Indonesia is a republic, with an...
as pioneering the use of RNP precision navigation technology in South Asia.
Description
The current specific requirements of an RNP system include:- capability to follow a desired ground trackGround trackA ground track or ground trace is the path on the surface of the Earth directly below an aircraft or satellite. In the case of a satellite, it is the projection of the satellite's orbit onto the surface of the Earth .A satellite ground track may be thought of as a path along the Earth's surface...
with reliability, repeatability and predictability, including curved paths; and - where vertical profiles are included for vertical guidanceVNAVIn aviation, Vertical NAVigation is an autopilot function which directs the vertical movement of an aircraft while cruising and/or on approach to landing....
, use of vertical angles or specific altitude constraints to define a desired vertical path.
The performance monitoring and alerting capabilities may be provided in different forms depending on the system installation, architecture and configurations, including:
- display and indication of both the required and the estimated navigation system performance;
- monitoring of the system performance and alerting the crew when RNP requirements are not met; and
- cross track deviation displays scaled to RNP, in conjunction with separate monitoring and alerting for navigation integrity.
An RNP system utilises its navigation sensors, system architecture and modes of operation to satisfy the RNP navigation specification requirements. It must perform the integrity and reasonableness checks of the sensors and data, and may provide a means to deselect specific types of navigation aids to prevent reversion to an inadequate sensor. RNP requirements may limit the modes of operation of the aircraft, e.g. for low RNP, where flight technical error (FTE) is a significant factor, manual flight by the crew may not be allowed. Dual system/sensor installations may also be required depending on the intended operation or need.
An RNAV system capable of achieving the performance requirements of an RNP specification is referred to as an RNP system. Because specific performance requirements are defined for each navigation specification, an aircraft approved for a RNP specification is not automatically approved for all RNAV specifications. Similarly, an aircraft approved for an RNP or RNAV specification having stringent accuracy requirements is not automatically approved for a navigation specification having a less stringent accuracy requirement.
Background
RNP procedures were introduced in the PANS-OPSPANS-OPS
PANS-OPS is an ATC term denominating rules for designing instrument approach and departure procedures...
(ICAO Doc 8168), which became applicable in 1998. These RNP procedures were the predecessor of the current PBN concept, whereby the performance for operation on the route is defined, in lieu of l flight elements such as flyover procedures, variability in flight paths, and added airspace buffer resulted in no significant advantages being achieved in designs. As a result, there was a lack of benefits to the user community and little or no implementation.
Designation
For oceanOcean
An ocean is a major body of saline water, and a principal component of the hydrosphere. Approximately 71% of the Earth's surface is covered by ocean, a continuous body of water that is customarily divided into several principal oceans and smaller seas.More than half of this area is over 3,000...
ic, remote, en-route
En-route chart
In aviation, an en-route chart is an aeronautical chart that guides pilots flying under Instrument Flight Rules during the en-route phase of flight.-Overview:...
and terminal operations, an RNP specification is designated as RNP X, e.g. RNP 4..
Approach navigation specifications cover all segments of the instrument approach
Instrument approach
For aircraft operating under instrument flight rules , an instrument approach or instrument approach procedure is a series of predetermined maneuvers for the orderly transfer of an aircraft under instrument flight conditions from the beginning of the initial approach to a landing, or to a point...
. RNP specifications are designated using RNP as a prefix and an abbreviated textual suffix, e.g. RNP APCH (for RNP approach)or RNP AR APCH (for RNP authorisation required approach).
Performance monitoring and alerting requirements
The performance monitoring and alerting requirements for RNP 4, Basic-RNP 1 and RNP APCH have common terminology and application. Each of these specifications includes requirements for the following characteristics:- Accuracy: The accuracy requirement defines the 95% Total System Error (TSE) for those dimensions where an accuracy requirement is specified. The accuracy requirement is harmonised with the RNAV navigation specifications and is always equal to the accuracy value. A unique aspect of the RNP navigation specifications is that the accuracy is one of the performance characteristics that is monitored.
- Performance monitoring: The aircraft, or aircraft and pilot combination, is required to monitor the TSE, and to provide an alert if the accuracy requirement is not met or if the probability that the TSE exceeds two-times the accuracy value is larger than 10−5. To the extent operational procedures are used to satisfy this requirement, the crew procedure, equipment characteristics, and installation are evaluated for their effectiveness and equivalence.
- Aircraft failures: Failure of the aircraft equipment is considered within airworthiness regulations. Failures are categorised by the severity of the aircraft level effect, and the system must be designed to reduce the likelihood of the failure or mitigate its effects. Both malfunction (equipment operating but not providing appropriate output) and loss of function (equipment ceases to function) are addressed. Dual system requirements are determined based on operational continuity (e.g. oceanic and remote operations). The requirements on aircraft failure characteristics are not unique to RNP navigation specifications.
- Signal-in-space failures: Signal-in-space characteristics of navigation signals are the responsibility of the ANSP.
The net effect of RNP navigation specifications is to provide bounding of the TSE distribution. Since path definition error is assumed to be negligible, the monitoring requirement is reduced to the other two components of TSE, i.e. flight technical error (FTE) and navigation system error (NSE). It is assumed that FTE is an ergodic stochastic process within a given flight control mode. As a result, the FTE distribution is constant over time within a given flight control mode. However, in contrast, the NSE distribution varies over time due to a number of changing characteristics, most notably:
- selected navigation sensors: the navigation sensors which are being used to estimate position, such as Global Navigation Satellite System (GNSS) or DME/DMEDistance Measuring EquipmentDistance measuring equipment is a transponder-based radio navigation technology that measures distance by timing the propagation delay of VHF or UHF radio signals....
; - the relative geometry of the aircraft position to the supporting navigation aids: all radio navaids have this basic variability, although the specific characteristics change. GNSS performance is affected by the relative geometry of the satelliteSatelliteIn the context of spaceflight, a satellite is an object which has been placed into orbit by human endeavour. Such objects are sometimes called artificial satellites to distinguish them from natural satellites such as the Moon....
s compared to the aircraft DME/DME navigation solutions are affected by the inclusion angle between the two DMEs at the aircraft (90° being optimal) and the distance to the DMEs, since the aircraft DME transponderTransponder (aviation)A transponder is an electronic device that produces a response when it receives a radio-frequency interrogation...
can have increasing range errors with increasing distance; - inertial reference unitInertial Reference UnitAn inertial reference unit is a type of inertial sensor which uses gyroscopes and accelerometers to determine a moving aircraft’s or spacecraft’s change in rotational attitude and translational position over a...
s: errors increase over time since last updated.
Application of performance monitoring and alerting to aircraft
Although the TSE can change significantly over time for a number of reasons, including those above, the RNP navigation specifications provide assurance that the TSE distribution remains suitable to the operation. This results from two requirements associated with the TSE distribution, namely:- the requirement that the TSE remains equal to or better than the required accuracy for 95% of the flight time; and
- the probability that the TSE of each aircraft exceeds the specified TSE limit (equal to two times the accuracy value) without annunciation is less than 10 −5.
Typically, the 10−5 TSE requirement provides a greater restriction on performance. For example, with any system that has TSE with a normal distribution of cross-track error, the 10−5 monitoring requirement constrains the standard deviation to be 2 x (accuracy value)/4.45 = accuracy value/2.23, while the 95% requirement would have allowed the standard deviation to be as large as the accuracy value/1.96.
It is important to understand that while these characteristics define minimum requirements that must be met, they do not define the actual TSE distribution. The actual TSE distribution may be expected to be typically better than the requirement, but there must be evidence on the actual performance if a lower TSE value is to be used.
In applying the performance monitoring requirement to aircraft, there can be significant variability in how individual errors are managed:
- some systems monitor the actual cross-track and along-track errors individually, whereas others monitor the radial NSE to simplify the monitoring and eliminate dependency on the aircraft track, e.g. based on typical elliptical 2-D error distributions.
- some systems include the FTE in the monitor by taking the current value of FTE as a bias on the TSE distribution.
- for basic GNSS systems, the accuracy and 10−5 requirements are met as a by-product of the ABAS requirements that have been defined in equipment standards and the FTE distribution for standardised course deviation indicatorCourse deviation indicatorCourse Deviation Indicator is an avionics instrument used in aircraft navigation to determine an aircraft's lateral position in relation to a track. If the location of the aircraft is to the left of course, the needle deflects to the right, and vice versa.-Use:The instrument shows the direction...
(CDI) displays.
It is important that performance monitoring is not regarded as error monitoring. A performance monitoring alert will be issued when the system cannot guarantee, with sufficient integrity, that the position meets the accuracy requirement. When such an alert is issued, the probable reason is the loss of capability to validate the position data (insufficient satellites being a potential reason). For such a situation, the most likely position of the aircraft at that time is exactly the same position indicated on the pilot display. Assuming the desired track has been flown correctly, the FTE would be within the required limits and therefore the likelihood of the TSE exceeding twice the accuracy value just prior to the alert is approximately 10−5. However, it cannot be assumed that simply because there is no alert the TSE is less than twice the accuracy value: the TSE can be larger. An example is for those aircraft that account for the FTE based on a fixed error distribution: for such systems, if the FTE grows large, no alert is issued by the system even when the TSE is many times larger than the accuracy value. For this reason, the operational procedures to monitor the FTE are important.
Oceanic and remote continental
Oceanic and remote continental airspace is currently served by two navigation applications, RNAV 10 and RNP 4. Both rely primarily on GNSS to support the navigation element of the airspace. In the case of RNAV 10, no form of ATS surveillance is required. In the case of RNP 4, ADS contract (ADS-C) is used.Continental en-route
Continental en-route airspace is currently supported by RNAV applications. RNAV 5 is used in the Middle EastMiddle East
The Middle East is a region that encompasses Western Asia and Northern Africa. It is often used as a synonym for Near East, in opposition to Far East...
(MID) and Europe
Europe
Europe is, by convention, one of the world's seven continents. Comprising the westernmost peninsula of Eurasia, Europe is generally 'divided' from Asia to its east by the watershed divides of the Ural and Caucasus Mountains, the Ural River, the Caspian and Black Seas, and the waterways connecting...
an (EUR) regions, but as of 2008, it is designated as B-RNAV (Basic RNAV in Europe and RNP 5 in the Middle East). In the United States
United States
The United States of America is a federal constitutional republic comprising fifty states and a federal district...
, RNAV 2 supports en-route continental airspace. At present, continental RNAV applications support airspace specifications which include radar
Radar
Radar is an object-detection system which uses radio waves to determine the range, altitude, direction, or speed of objects. It can be used to detect aircraft, ships, spacecraft, guided missiles, motor vehicles, weather formations, and terrain. The radar dish or antenna transmits pulses of radio...
surveillance and direct controller-to-pilot voice
Speech
Speech is the human faculty of speaking.It may also refer to:* Public speaking, the process of speaking to a group of people* Manner of articulation, how the body parts involved in making speech are manipulated...
communications.
Terminal airspace: arrival and departure
Existing terminal airspace concepts, which include arrival and departure, are supported by RNAV applications. These are currently used in the European (EUR) Region and the United States. The European terminal airspace RNAV application is known as P-RNAV (Precision RNAV). Although the RNAV 1 specification shares a common navigation accuracy with P-RNAV, this regional navigation specification does not satisfy the full requirements of the RNAV 1 specification. As of 2008, the United States terminal airspace application formerly known as US RNAV Type B has been aligned with the PBN concept and is now called RNAV 1. Basic RNP 1 has been developed primarily for application in non-radar, low density terminal airspace. In future, more RNP applications are expected to be developed for both en-route and terminal airspace.Approach
Approach concepts cover all segments of the instrument approach, i.e. initialInitial approach fix
The Initial Approach Fix is the point where the initial approach segment of an instrument approach begins. An instrument approach procedure may have more than one Initial Approach Fix and initial approach segment. The initial approach fix is usually a designated intersection, VOR, NDB, or DME fix...
, intermediate final
Final approach (aviation)
A final approach is the last leg in an aircraft's approach to landing. In aviation radio terminology, it is often shortened to "final".In a standard airport landing pattern, which is usually used under visual meteorological conditions , aircraft turn from base leg to final within one to two miles...
and missed approach
Missed approach
Missed approach is an instrument flight rules procedure which is a standard component segment of an instrument approach. Generally, if the pilot flying or the pilot in command determines by the time the aircraft is at the decision height or missed approach point , that the runway or its...
. They will increasingly call for RNP specifications requiring a navigation accuracy of 0.3 NM to 0.1 NM or lower. Typically, three sorts of RNP applications are characteristic of this phase of flight: new procedures to runways never served by an instrument procedure, procedures either replacing or serving as backup to existing instrument procedures based on different technologies, and procedures developed to enhance airport access in demanding environments (RNP APCH and RNP AR APCH).
RNP approaches to 0.3 NM and 0.1 NM at Queenstown Airport in New Zealand are the primary approaches used by Qantas and Air New Zealand for both international and domestic services. Due to terrain restrictions, ILS approaches are not possible, and conventional VOR/DME approaches have descent restrictions more than 2,000 ft above the airport level. The RNP approaches and departures follow curved paths below terrain level.
Special Aircraft and Aircrew Authorization Required approach
RNP instrument approach procedures with Special Aircraft and Aircrew Authorization Required (SAAAR) approach procedures build upon the performance based NAS concept. The performance requirements to conduct an approach are defined, and aircraft are qualified against these performance requirements. Conventional obstacle evaluation areas for ground-based navigation aids are based on a predefined aircraft capability and navigation system. RNP SAAAR criteria for obstacle evaluation are flexible and designed to adapt to unique operational environments. This allows approach specific performance requirements as necessary for an approach procedure. The operational requirement can include avoiding terrain and obstacles, de-conflicting airspace or resolving environmental constraints.RNP approaches include capabilities that require special aircraft and aircrew authorization similar to category II/III ILS operations. All RNP SAAAR approaches have reduced lateral obstacle evaluation areas and vertical obstacle clearance surfaces predicated on the aircraft and aircrew performance requirements. In addition, there are two characteristics used for selected procedures as necessary, where operators can be authorized for any subset of these characteristics:
- ability to fly a published arc (also referred to as an RF leg);
- reduced lateral obstacle evaluation area on the missed approach (also referred to as a missed approach requiring RNP less than 1.0 NM).
When conducting an RNP SAAAR approach using a line of minima less than RNP 0.3, no single-point-of-failure can cause the loss of guidance compliant with the RNP value associated with the approach. Typically, the aircraft must have at least dual GNSS sensors. dual flight management systems, dual air data systems, dual autopilots, and a single inertial reference unit.
When conducting an RNP SAAAR approach with a missed approach less than RNP 1.0, no single-point-of-failure can cause the loss of guidance compliant with the RNP value associated with a missed approach procedure. Typically, the aircraft must have at least dual GNSS sensors, dual flight management systems, dual air data systems, dual autopilots, and a single inertial reference unit.