Robert Maillart
Encyclopedia
Robert Maillart was a Swiss civil engineer
who revolutionized the use of structural reinforced concrete
with such designs as the three-hinged arch and the deck-stiffened arch for bridges, and the beamless floor slab and mushroom ceiling for industrial buildings. His completed Salginatobel
(1929–1930) and Schwandbach
(1933) bridges changed the aesthetics and engineering of bridge construction dramatically and influenced decades of architects and engineers after him. In 1991 the Salginatobel Bridge was declared an International Historic Civil Engineering Landmark by the American Society of Civil Engineers
.
. Maillart did not excel in academic theories, but understood the necessity to make assumptions and visualize when analyzing a structure. A traditional method prior to the 1900s was to use shapes that could be analyzed easily using mathematics.
This overuse of mathematics annoyed Maillart, as he greatly preferred to stand back and use common sense to predict full-scale performance. Also, as he rarely tested his bridges prior to construction, only upon completion would he verify the bridge was adequate. He often tested his bridges by crossing them himself. This attitude towards bridge design and construction was what provided him with his innovative designs.
, then for a few years with a private firm there.
By 1902, Maillart established his own firm, Maillart & Cie. In 1912 he moved his family with him to Russia while he managed construction of major projects for large factories and warehouses in Kharkov, Riga
and St. Petersburg, as Russia was industrializing, with the help of Swiss investments. Unaware of the outbreak of World War I
, Maillart was caught in the country with his family. In 1916 his wife died, and in 1917 the Communist Revolution
and nationalizing of assets caused him to lose his projects and bonds. When the widower Maillart and his three children returned to Switzerland, he was penniless and heavily in debt to Swiss banks. After that he had to work for other firms, but the best of his designs were still to come. By 1920 he moved to an engineering office in Geneva
, which later had offices in Bern and Zurich.
as a major bridge construction material was in 1856. It was used to form a multiple-arch structure on the Grand Maître Aqueduct in France
. The concrete was cast in its crudest form, a huge mass without reinforcement. Later in the nineteenth century, engineers explored the possibilities of reinforced concrete as a structural material. They found that the concrete carried compressive forces, while steel bars carried the tension forces. This made concrete a better material for structures.
Joseph Monier
, from France, is credited with being the first to understand the principles of reinforced concrete
. He embedded an iron-wire mesh into concrete. He was a gardener, not a licensed engineer, and sold his patents to contractors who built the first generation of reinforced concrete bridges in Europe. He also perfected the technique of pre-stressing concrete, which leaves permanent compressive stresses in concrete arches.
By the early twentieth century, reinforced concrete became an acceptable substitute in construction for all previous structural materials, such as stone, wood, and steel. People such as Monier had developed useful techniques for design and construction, but no one had created new forms that showed the full aesthetic nature of reinforced concrete.
Robert Maillart had an intuition and genius that exploited the aesthetic of concrete. He designed three-hinged arches in which the deck and the arch ribs were combined, to produce closely integrated structures that evolved into stiffened arches of very thin reinforced concrete and concrete slabs. The Salginatobel Bridge
(1930) and Schwandbach Bridge
(1933) are classic examples of Maillart’s three-hinged arch bridges and deck-stiffened arch bridges, respectively. They have been recognized for their elegance and their influence on the later design and engineering of bridges.
These designs went beyond the common boundaries of concrete design in Maillart’s time. Both of the bridges mentioned above are great examples of Maillart’s ability to simplify design in order to allow for maximum use of materials and to incorporate the natural beauty of the structure’s environment. Selected from among 19 entrants in a design competition in part because of the low cost of his proposal, Maillart began construction of the Salginatobal Bridge in Schiers, Switzerland in 1929; it opened on August 13, 1930.
Maillart is known also for his revolutionary column design in a number of buildings. He constructed his first mushroom ceiling for a warehouse in Zurich, together with treating the concrete floor as a slab, rather than reinforcing it with beams. One of his most famous is the design of the columns in the water filtration plant in Rorschach, Switzerland. Maillart decided to abandon standard methods in order to create “the more rational and more beautiful European method of building”. Maillart’s design of the columns included flaring the tops to reduce the bending moment
in the beams between the columns. With the flare, the columns formed slight arches to transfer the loads from the ceiling beams to the columns.
Maillart also flared the bottom of the columns to reduce the pressure (force per area) on a certain point of the soil foundation. By flaring the bottoms of the columns, the area of the load was more widely distributed, therefore reducing the pressure over the soil foundation.
Many of his predecessors had modeled by this method using wood and steel, but Maillart was revolutionary in being the first to use concrete. He used concrete because it could support a large mound of earthen material for insulation against freezing. Since concrete is very good in compression situations, it was the perfect material to support a large, unmoving mass of earth.
in 1847. His major breakthrough was that truss members could be analyzed as a system of forces in equilibrium. This system, known as the “method of joints,” permits the determination of stresses in all known members of a truss if two forces are known. The next advance in design was the “method of sections,” developed by Wilhelm Ritter in 1862. Ritter simplified the calculations of forces by developing a very simple formula for determining the forces in the members intersected by a cross-section. A third advance was a better method of graphical analysis, developed independently by J.C. Maxwell (UK) and Karl Culmann. (Switzerland).
Robert Maillart learned the analytical methods of his era, but he was most influenced by the principles developed by his mentor, Wilhelm Ritter, mentioned above. Maillart studied under Ritter, who had three basic principles of design. The first of these was to value calculations based on simple analysis, so that appropriate assumptions could be made based on common sense. The second was to consider carefully the construction process of the structure, not just the final product. The last principle was to test a structure always with full-scale load tests. All these principles are an adaptation of the available techniques, but with an emphasis on the careful study of previously built structures.
At the time of Maillart and Ritter, other designers preferred that their designs evolve from previously successful structures and designs. German engineers and scientists had developed elaborate mathematical techniques, and were confident that they did not need practical load tests of their designs developed using those techniques. However, these techniques did not encourage designers to think of unusual shapes, because those shapes could not be completely analyzed using the available mathematical techniques. Ritter’s principles did allow for uncommon shapes.
Civil engineer
A civil engineer is a person who practices civil engineering; the application of planning, designing, constructing, maintaining, and operating infrastructures while protecting the public and environmental health, as well as improving existing infrastructures that have been neglected.Originally, a...
who revolutionized the use of structural reinforced concrete
Reinforced concrete
Reinforced concrete is concrete in which reinforcement bars , reinforcement grids, plates or fibers have been incorporated to strengthen the concrete in tension. It was invented by French gardener Joseph Monier in 1849 and patented in 1867. The term Ferro Concrete refers only to concrete that is...
with such designs as the three-hinged arch and the deck-stiffened arch for bridges, and the beamless floor slab and mushroom ceiling for industrial buildings. His completed Salginatobel
Salginatobel Bridge
Salginatobel Bridge is a reinforced concrete arch bridge designed by renowned Swiss civil engineer Robert Maillart. It was constructed across an alpine valley in Schiers, Switzerland between 1929 and 1930...
(1929–1930) and Schwandbach
Schwandbach Bridge
The Schwandbach Bridge is a deck-stiffened reinforced concrete arch bridge near Berne in Switzerland, designed by Robert Maillart and completed in 1933.- Design :...
(1933) bridges changed the aesthetics and engineering of bridge construction dramatically and influenced decades of architects and engineers after him. In 1991 the Salginatobel Bridge was declared an International Historic Civil Engineering Landmark by the American Society of Civil Engineers
American Society of Civil Engineers
The American Society of Civil Engineers is a professional body founded in 1852 to represent members of the civil engineering profession worldwide. It is the oldest national engineering society in the United States. ASCE's vision is to have engineers positioned as global leaders who strive toward...
.
Early life and education
Robert Maillart was born in Berne, Switzerland. He attended the Federal Institute of Technology in ZurichZürich
Zurich is the largest city in Switzerland and the capital of the canton of Zurich. It is located in central Switzerland at the northwestern tip of Lake Zurich...
. Maillart did not excel in academic theories, but understood the necessity to make assumptions and visualize when analyzing a structure. A traditional method prior to the 1900s was to use shapes that could be analyzed easily using mathematics.
This overuse of mathematics annoyed Maillart, as he greatly preferred to stand back and use common sense to predict full-scale performance. Also, as he rarely tested his bridges prior to construction, only upon completion would he verify the bridge was adequate. He often tested his bridges by crossing them himself. This attitude towards bridge design and construction was what provided him with his innovative designs.
Career
Maillart returned to Bern to work for three years with Pümpin & Herzog (1894–1896). He next worked for two years with the city of ZurichZürich
Zurich is the largest city in Switzerland and the capital of the canton of Zurich. It is located in central Switzerland at the northwestern tip of Lake Zurich...
, then for a few years with a private firm there.
By 1902, Maillart established his own firm, Maillart & Cie. In 1912 he moved his family with him to Russia while he managed construction of major projects for large factories and warehouses in Kharkov, Riga
Riga
Riga is the capital and largest city of Latvia. With 702,891 inhabitants Riga is the largest city of the Baltic states, one of the largest cities in Northern Europe and home to more than one third of Latvia's population. The city is an important seaport and a major industrial, commercial,...
and St. Petersburg, as Russia was industrializing, with the help of Swiss investments. Unaware of the outbreak of World War I
World War I
World War I , which was predominantly called the World War or the Great War from its occurrence until 1939, and the First World War or World War I thereafter, was a major war centred in Europe that began on 28 July 1914 and lasted until 11 November 1918...
, Maillart was caught in the country with his family. In 1916 his wife died, and in 1917 the Communist Revolution
Communist revolution
A communist revolution is a proletarian revolution inspired by the ideas of Marxism that aims to replace capitalism with communism, typically with socialism as an intermediate stage...
and nationalizing of assets caused him to lose his projects and bonds. When the widower Maillart and his three children returned to Switzerland, he was penniless and heavily in debt to Swiss banks. After that he had to work for other firms, but the best of his designs were still to come. By 1920 he moved to an engineering office in Geneva
Geneva
Geneva In the national languages of Switzerland the city is known as Genf , Ginevra and Genevra is the second-most-populous city in Switzerland and is the most populous city of Romandie, the French-speaking part of Switzerland...
, which later had offices in Bern and Zurich.
Development and use of reinforced concrete
The first use of concreteConcrete
Concrete is a composite construction material, composed of cement and other cementitious materials such as fly ash and slag cement, aggregate , water and chemical admixtures.The word concrete comes from the Latin word...
as a major bridge construction material was in 1856. It was used to form a multiple-arch structure on the Grand Maître Aqueduct in France
France
The French Republic , The French Republic , The French Republic , (commonly known as France , is a unitary semi-presidential republic in Western Europe with several overseas territories and islands located on other continents and in the Indian, Pacific, and Atlantic oceans. Metropolitan France...
. The concrete was cast in its crudest form, a huge mass without reinforcement. Later in the nineteenth century, engineers explored the possibilities of reinforced concrete as a structural material. They found that the concrete carried compressive forces, while steel bars carried the tension forces. This made concrete a better material for structures.
Joseph Monier
Joseph Monier
-Overview:Joseph Monier was a French gardener and one of the principal inventors of reinforced concrete....
, from France, is credited with being the first to understand the principles of reinforced concrete
Reinforced concrete
Reinforced concrete is concrete in which reinforcement bars , reinforcement grids, plates or fibers have been incorporated to strengthen the concrete in tension. It was invented by French gardener Joseph Monier in 1849 and patented in 1867. The term Ferro Concrete refers only to concrete that is...
. He embedded an iron-wire mesh into concrete. He was a gardener, not a licensed engineer, and sold his patents to contractors who built the first generation of reinforced concrete bridges in Europe. He also perfected the technique of pre-stressing concrete, which leaves permanent compressive stresses in concrete arches.
By the early twentieth century, reinforced concrete became an acceptable substitute in construction for all previous structural materials, such as stone, wood, and steel. People such as Monier had developed useful techniques for design and construction, but no one had created new forms that showed the full aesthetic nature of reinforced concrete.
Robert Maillart had an intuition and genius that exploited the aesthetic of concrete. He designed three-hinged arches in which the deck and the arch ribs were combined, to produce closely integrated structures that evolved into stiffened arches of very thin reinforced concrete and concrete slabs. The Salginatobel Bridge
Salginatobel Bridge
Salginatobel Bridge is a reinforced concrete arch bridge designed by renowned Swiss civil engineer Robert Maillart. It was constructed across an alpine valley in Schiers, Switzerland between 1929 and 1930...
(1930) and Schwandbach Bridge
Schwandbach Bridge
The Schwandbach Bridge is a deck-stiffened reinforced concrete arch bridge near Berne in Switzerland, designed by Robert Maillart and completed in 1933.- Design :...
(1933) are classic examples of Maillart’s three-hinged arch bridges and deck-stiffened arch bridges, respectively. They have been recognized for their elegance and their influence on the later design and engineering of bridges.
These designs went beyond the common boundaries of concrete design in Maillart’s time. Both of the bridges mentioned above are great examples of Maillart’s ability to simplify design in order to allow for maximum use of materials and to incorporate the natural beauty of the structure’s environment. Selected from among 19 entrants in a design competition in part because of the low cost of his proposal, Maillart began construction of the Salginatobal Bridge in Schiers, Switzerland in 1929; it opened on August 13, 1930.
Maillart is known also for his revolutionary column design in a number of buildings. He constructed his first mushroom ceiling for a warehouse in Zurich, together with treating the concrete floor as a slab, rather than reinforcing it with beams. One of his most famous is the design of the columns in the water filtration plant in Rorschach, Switzerland. Maillart decided to abandon standard methods in order to create “the more rational and more beautiful European method of building”. Maillart’s design of the columns included flaring the tops to reduce the bending moment
Moment
- Science, engineering, and mathematics :* Moment , used in probability theory and statistics* Moment , several related concepts, including:** Angular momentum or moment of momentum, the rotational analog of momentum...
in the beams between the columns. With the flare, the columns formed slight arches to transfer the loads from the ceiling beams to the columns.
Maillart also flared the bottom of the columns to reduce the pressure (force per area) on a certain point of the soil foundation. By flaring the bottoms of the columns, the area of the load was more widely distributed, therefore reducing the pressure over the soil foundation.
Many of his predecessors had modeled by this method using wood and steel, but Maillart was revolutionary in being the first to use concrete. He used concrete because it could support a large mound of earthen material for insulation against freezing. Since concrete is very good in compression situations, it was the perfect material to support a large, unmoving mass of earth.
Legacy and honors
- 1936, elected as Fellow to Royal Institute of British ArchitectsRoyal Institute of British ArchitectsThe Royal Institute of British Architects is a professional body for architects primarily in the United Kingdom, but also internationally.-History:...
(RIBA) - 1947, an exhibit on Robert Maillart at the Museum of Modern ArtMuseum of Modern ArtThe Museum of Modern Art is an art museum in Midtown Manhattan in New York City, on 53rd Street, between Fifth and Sixth Avenues. It has been important in developing and collecting modernist art, and is often identified as the most influential museum of modern art in the world...
in New York featured his bridges and design work - Salginatobel Bridge was designated a Swiss heritage site of national significanceSwiss Inventory of Cultural Property of National and Regional SignificanceThe Swiss Inventory of Cultural Property of National and Regional Significance is a register of some 8,300 items of cultural property in Switzerland...
. - 1991, the American Society of Civil EngineersAmerican Society of Civil EngineersThe American Society of Civil Engineers is a professional body founded in 1852 to represent members of the civil engineering profession worldwide. It is the oldest national engineering society in the United States. ASCE's vision is to have engineers positioned as global leaders who strive toward...
declared the Salginatobel Bridge an International Historic Civil Engineering Landmark. - 2001, the British trade journal, Bridge – Design and Engineering, voted Maillart's Salginatobel Bridge "the most beautiful bridge of the century".
Analytical methods
By the second half of the nineteenth century, major advances in design theory, graphic statics, and knowledge of material strengths had been achieved. As the nineteenth century neared its end, the major factor contributing to the need for scientific design of bridges was the railroads. Engineers had to know the precise levels of stresses in bridge members, in order to accommodate the impact of trains. The first design solution was obtained by Squire WhippleSquire Whipple
Squire Whipple C.E. was a civil engineer born in Hardwick, Massachusetts, USA. His family moved to New York when he was thirteen. He studied at Fairfield Academy. He graduated from Union College after only one year...
in 1847. His major breakthrough was that truss members could be analyzed as a system of forces in equilibrium. This system, known as the “method of joints,” permits the determination of stresses in all known members of a truss if two forces are known. The next advance in design was the “method of sections,” developed by Wilhelm Ritter in 1862. Ritter simplified the calculations of forces by developing a very simple formula for determining the forces in the members intersected by a cross-section. A third advance was a better method of graphical analysis, developed independently by J.C. Maxwell (UK) and Karl Culmann. (Switzerland).
Robert Maillart learned the analytical methods of his era, but he was most influenced by the principles developed by his mentor, Wilhelm Ritter, mentioned above. Maillart studied under Ritter, who had three basic principles of design. The first of these was to value calculations based on simple analysis, so that appropriate assumptions could be made based on common sense. The second was to consider carefully the construction process of the structure, not just the final product. The last principle was to test a structure always with full-scale load tests. All these principles are an adaptation of the available techniques, but with an emphasis on the careful study of previously built structures.
At the time of Maillart and Ritter, other designers preferred that their designs evolve from previously successful structures and designs. German engineers and scientists had developed elaborate mathematical techniques, and were confident that they did not need practical load tests of their designs developed using those techniques. However, these techniques did not encourage designers to think of unusual shapes, because those shapes could not be completely analyzed using the available mathematical techniques. Ritter’s principles did allow for uncommon shapes.
Bridges
- Tavanasa Bridge
- Arve Bridge
- Zuoz Bridge
- Stauffacher Bridge
- Salginatobel BridgeSalginatobel BridgeSalginatobel Bridge is a reinforced concrete arch bridge designed by renowned Swiss civil engineer Robert Maillart. It was constructed across an alpine valley in Schiers, Switzerland between 1929 and 1930...
- Schwandbach BridgeSchwandbach BridgeThe Schwandbach Bridge is a deck-stiffened reinforced concrete arch bridge near Berne in Switzerland, designed by Robert Maillart and completed in 1933.- Design :...
- Bohlbach Bridge
- Rossgraben Bridge