STS-87
Encyclopedia
STS-87 was a Space Shuttle
Space Shuttle
The Space Shuttle was a manned orbital rocket and spacecraft system operated by NASA on 135 missions from 1981 to 2011. The system combined rocket launch, orbital spacecraft, and re-entry spaceplane with modular add-ons...

 mission launched from KSC
Kennedy Space Center
The John F. Kennedy Space Center is the NASA installation that has been the launch site for every United States human space flight since 1968. Although such flights are currently on hiatus, KSC continues to manage and operate unmanned rocket launch facilities for America's civilian space program...

 pad 39-B on 19 November 1997. It was the 88th flight of the Space Shuttle, and the 24th flight of Columbia
Space Shuttle Columbia
Space Shuttle Columbia was the first spaceworthy Space Shuttle in NASA's orbital fleet. First launched on the STS-1 mission, the first of the Space Shuttle program, it completed 27 missions before being destroyed during re-entry on February 1, 2003 near the end of its 28th, STS-107. All seven crew...

. The mission goals were to conduct experiments using the United States Microgravity Payload (USMP-4), to conduct 2 EVAs
Extra-vehicular activity
Extra-vehicular activity is work done by an astronaut away from the Earth, and outside of a spacecraft. The term most commonly applies to an EVA made outside a craft orbiting Earth , but also applies to an EVA made on the surface of the Moon...

, and to deploy the SPARTAN-201 experiment.

Crew

Mission parameters

  • Mass
    Mass
    Mass can be defined as a quantitive measure of the resistance an object has to change in its velocity.In physics, mass commonly refers to any of the following three properties of matter, which have been shown experimentally to be equivalent:...

    :
    • Orbiter landing with payload: 102717 kilograms (226,452.2 lb)
    • Payload: 4451 kilograms (9,812.8 lb)
  • Perigee
    Perigee
    Perigee is the point at which an object makes its closest approach to the Earth.. Often the term is used in a broader sense to define the point in an orbit where the orbiting body is closest to the body it orbits. The opposite is the apogee, the farthest or highest point.The Greek prefix "peri"...

    :
    273 kilometres (169.6 mi)
  • Apogee: 279 kilometres (173.4 mi)
  • Inclination
    Inclination
    Inclination in general is the angle between a reference plane and another plane or axis of direction.-Orbits:The inclination is one of the six orbital parameters describing the shape and orientation of a celestial orbit...

    :
    28.5°
  • Period
    Orbital period
    The orbital period is the time taken for a given object to make one complete orbit about another object.When mentioned without further qualification in astronomy this refers to the sidereal period of an astronomical object, which is calculated with respect to the stars.There are several kinds of...

    :
    90.0 min

Space walk

  • Scott and Doi – EVA 1
  • EVA 1 Start: 25 November 1997 – 00:02 UTC
  • EVA 1 End: 25 – 7 November:45 UTC
  • Duration: 7 hours, 43 minutes
  • Scott and Doi – EVA 2
  • EVA 2 Start: 3 December 1997 – 09:09 UTC
  • EVA 2 End: 3 – 14 December:09 UTC
  • Duration: 4 hours, 59 minutes

Mission highlights

STS-87 flew the United States Microgravity Payload (USMP-4), the Spartan-201, the Orbital Acceleration Research Experiment (OARE), the EVA Demonstration Flight Test 5 (EDFT-05), the Shuttle Ozone Limb Sending Experiment (SOLSE), the Loop Heat Pipe (LHP), the Sodium Sulfur Battery Experiment (NaSBE), the Turbulent GAS Jet Diffusion (G-744) experiment and the Autonomous EVA Robotic Camera/Sprint (AERCam Sprint
AERCam Sprint
The Autonomous Extravehicular Activity Robotic Camera Sprint is a NASA experiment to demonstrate the use of a prototype free-flying television camera that could be used for remote inspections of the exterior of the International Space Station....

) experiment. Two mid-deck experiments are the Middeck Glovbox Payload (MGBX) and the Collaborative Ukrainian Experiment (CUE).

United States Microgravity Payload

The United States Microgravity Payload (USMP-4) is a Spacelab
Spacelab
Spacelab was a reusable laboratory used on certain spaceflights flown by the Space Shuttle. The laboratory consisted of multiple components, including a pressurized module, an unpressurized carrier and other related hardware housed in the Shuttle's cargo bay...

 project managed by Marshall Space Flight Center
Marshall Space Flight Center
The George C. Marshall Space Flight Center is the U.S. government's civilian rocketry and spacecraft propulsion research center. The largest center of NASA, MSFC's first mission was developing the Saturn launch vehicles for the Apollo moon program...

, Huntsville
Huntsville, Alabama
Huntsville is a city located primarily in Madison County in the central part of the far northern region of the U.S. state of Alabama. Huntsville is the county seat of Madison County. The city extends west into neighboring Limestone County. Huntsville's population was 180,105 as of the 2010 Census....

, Alabama. The complement of microgravity research experiments is divided between two Mission-Peculiar Experiment Support Structures (MPESS) in the payload bay. The extended mission capability offered by the Extended Duration Orbiter (EDO) kit provides an opportunity for additional science gathering time.

SPARTAN-201

Spartan 201-04 is a Solar Physics Spacecraft designed to perform remote sensing of the hot outer layers of the sun's atmosphere or corona
Corona
A corona is a type of plasma "atmosphere" of the Sun or other celestial body, extending millions of kilometers into space, most easily seen during a total solar eclipse, but also observable in a coronagraph...

. It is expected to be deployed on orbit 18 and retrieved on orbit 52. The objective of the observations are to investigate the mechanisms causing the heating of the solar corona and the acceleration of the solar wind which originates in the corona. Two primary experiments are the Ultraviolet Coronal Spectrometer from the Smithsonian Astrophysical Observatory
Smithsonian Astrophysical Observatory
The Smithsonian Astrophysical Observatory is a research institute of the Smithsonian Institution headquartered in Cambridge, Massachusetts, where it is joined with the Harvard College Observatory to form the Harvard-Smithsonian Center for Astrophysics .-History:The SAO was founded in 1890 by...

, and the White Light Coronograph (WLC) from the High Altitude Observatory. Spartan 201 has three secondary experiments. The Technology Experiment Augmenting Spartan (TEXAS) is a Radio Frequency (RF) communications experiment which provided flight experience for components baselined on future Spartan missions, and a real time communications and control link with the primary Spartan 201 experiments. This link was used to provide a fine pointing adjustment to the WLC based on solar images downlinked real time. The Video Guidance Sensor (VGS) Flight Experiment is a laser guidance system which tested a key component of the Automated Rendezvous and Capture (AR&C) system. The Spartan Auxiliary Mounting Plate (SPAM) is a small equipment mounting plate which provided a mounting location for small experiments or auxiliary equipment of the Spartan Flight Support Structure (SFSS) It is a honeycomb plate using an experimental Silicon Carbide Aluminum face sheet material with an aluminum core.

Advanced Automated Directional Solidification Furnace

The Advanced Automated Directional Solidification Furnace (AADSF) is a sophisticated materials science facility used for studying a common method of processing semiconductor
Semiconductor
A semiconductor is a material with electrical conductivity due to electron flow intermediate in magnitude between that of a conductor and an insulator. This means a conductivity roughly in the range of 103 to 10−8 siemens per centimeter...

 crystals called directional solidification. Solidification is the process of freezing materials. In the type of directional solidification to be used in AADSF, the liquid sample, enclosed in quartz ampoules, will be slowly solidified along the long axis. A mechanism will move the sample through varying temperature zones in the furnace. To start processing, the furnace melts all but one end of the sample towards the other. Once crystallized, the sample remains in the furnace to be examined post-flight. The solidification front is of particular interest to scientists because the flows found in the liquid material influence the final composition and structure of the solid and its properties.

Confined Helium Experiment

The Confined Helium Experiment (CHeX) provides a test of theories of the influence of boundaries on matter by measuring the heat capacity
Heat capacity
Heat capacity , or thermal capacity, is the measurable physical quantity that characterizes the amount of heat required to change a substance's temperature by a given amount...

 of helium as it is confined to two dimensions.

Isothermal Dendritic Growth Experiment

The Isothermal Dendritic Growth Experiment (IDGE) is a materials science
Materials science
Materials science is an interdisciplinary field applying the properties of matter to various areas of science and engineering. This scientific field investigates the relationship between the structure of materials at atomic or molecular scales and their macroscopic properties. It incorporates...

 solidification experiment that researchers will use to investigate a particular type of solidification called dendritic growth. Dendritic solidification is one of the most common forms of solidifying metals and alloys. When materials crystallize or solidify under certain condition, they freeze unstably, resulting in tiny, tree-like crystalline forms called dendrite
Dendrite (crystal)
A crystal dendrite is a crystal that develops with a typical multi-branching tree-like form. Dendritic crystal growth is very common and illustrated by snowflake formation and frost patterns on a window. Dendritic crystallization forms a natural fractal pattern...

s. Scientist are particularly interested in dendrite size, shape, and how the branches of the dendrites interact with each other. These characteristics largely determine the properties of the material.

Designed for research on the directional solidification
Directional solidification
Directional solidification and progressive solidification describe types of solidification within castings. Directional solidification describes solidification that occurs from farthest end of the casting and works its way towards the sprue...

 of metallic alloys, the Material pour l'Etude des Phenomenes Interssant la Solidification sur Terre et en Orbite (MEPHISTO
Mephisto
Mephisto or Mephistopheles is one of the chief demons of German literary tradition.Mephisto or Mephistopheles may also refer to:* Mephisto , a high-speed human-powered vehicle...

) experiment is primarily interested in measuring the temperature, velocity, and shape of the solidification front (the point where the solid and liquid contact each other during solidification.) MEPHISTO simultaneously processes three identical cylindrical samples of bismuth
Bismuth
Bismuth is a chemical element with symbol Bi and atomic number 83. Bismuth, a trivalent poor metal, chemically resembles arsenic and antimony. Elemental bismuth may occur naturally uncombined, although its sulfide and oxide form important commercial ores. The free element is 86% as dense as lead...

 and tin
Tin
Tin is a chemical element with the symbol Sn and atomic number 50. It is a main group metal in group 14 of the periodic table. Tin shows chemical similarity to both neighboring group 14 elements, germanium and lead and has two possible oxidation states, +2 and the slightly more stable +4...

 alloy
Alloy
An alloy is a mixture or metallic solid solution composed of two or more elements. Complete solid solution alloys give single solid phase microstructure, while partial solutions give two or more phases that may or may not be homogeneous in distribution, depending on thermal history...

. In the first sample, the temperature fluctuations of the moving solidification are measured electrically, with disturbing the sample. The position of the solid to liquid border is determined by an electrical resistance technique in the second sample. In the third sample, the faceted solidification front is marked at selected intervals with electric current pulses. The samples are returned to Earth for analysis. During the mission, MEPHISTO data will be correlated with data from the Space Acceleration Measurement System (SAMS). By comparing data, scientists can determine how accelerations aboard the shuttle disturb the solid to liquid interface.

Space Acceleration Measurement System

The Space Acceleration Measurement System (SAMS), sponsored by NASA Lewis Research Center (now NASA Glenn Research Center), is a microprocessor-driven data acquisition system designed to measure and record the microgravity acceleration environment of the USMP carrier. The SAMS has three triaxial sensor heads that are separate from the electronics package for remote positioning. In operation, the triaxial sensor head produces output signals in response to acceleration inputs. The signals are amplified, filtered, and converted into digital data. The digital acceleration data is transferred to optical disk memory for ground analysis and downlinked to the ground for near-real-time analysis. Each accelerometer
Accelerometer
An accelerometer is a device that measures proper acceleration, also called the four-acceleration. This is not necessarily the same as the coordinate acceleration , but is rather the type of acceleration associated with the phenomenon of weight experienced by a test mass that resides in the frame...

 has a mass suspended by a quartz element is such a manner to allow movement along one axis only. A coil is attached to the mass and the assembly is placed between two permanent magnets. An applied acceleration displaces the mass form its resting position. This movement is sensed by a detector, causing SAMS electronics to send a voltage to the coil, producing exactly the magnetic field needed to restore the mass to its original position. The applied voltage is proportional to the applied acceleration and is output to the SAMS electronics as acceleration data.

Orbital Acceleration Research Experiment

While flying separately in the cargo bay, the Orbital Acceleration Research Experiment (OARE), sponsored by NASA Lewis Research Center (now Glenn Research Center), is an integral part of USMP-04. It is a highly sensitive instrument designed to acquire and record data of low-level aerodynamic acceleration along the orbiter's principal axes in the free-molecular flow regime at orbital altitudes and in the transition regime during re-entry. OARE data is also downlinked during the mission for near-real-time analysis in support of the USMP science experiments. OARE data will support advances in space materials processing by providing measurements of the low-level, low frequency disturbance environment affecting various microgravity experiments. OARE data will also support advances in orbital drag prediction technology by increasing the understanding of the fundamental flow phenomena in the upper atmosphere.

Shuttle Ozone Limb Sounding Experiment

The objective of the Shuttle Ozone Limb Sounding Experiment (SOLSE) is to determine the altitude distribution of ozone
Ozone
Ozone , or trioxygen, is a triatomic molecule, consisting of three oxygen atoms. It is an allotrope of oxygen that is much less stable than the diatomic allotrope...

 in an attempt to understand its behavior so that quantitative changes in the composition of our atmosphere can be predicted. SOLSE is intended to perform ozone distribution that a nadir instrument can achieve. This will be performed using Charged Coupled Device (CCD
Charge-coupled device
A charge-coupled device is a device for the movement of electrical charge, usually from within the device to an area where the charge can be manipulated, for example conversion into a digital value. This is achieved by "shifting" the signals between stages within the device one at a time...

) technology to eliminate moving parts in a simpler, low cost, ozone mapping instrument. The experiment is housed in a Hitchhiker (HH/GAS) canister with canister extension ring and equipped with a Hitchhiker Motorized Door Assembly (HMDA). Instrumentation includes an Ultraviolet (UV) spectrograph
Spectrograph
A spectrograph is an instrument that separates an incoming wave into a frequency spectrum. There are several kinds of machines referred to as spectrographs, depending on the precise nature of the waves...

 with a CCD array detector, CCD array and visible light cameras, calibration lamp, optics and baffling. Once on orbit a crew member will active SOLSE which will perform limb and Earth viewing observations. Limb observations focuses on the region 20 kilometres (12.4 mi) to 50 kilometres (31.1 mi) altitude above the horizon for the Earth's surface. Earth viewing observations will enable SOLSE to correlate the data with other nadir viewing, ozone instruments.

Loop Heat Pipe

The Loop Heat Pipe (LHP) test will advance thermal energy management technology and validating technology readiness for upcoming commercial spacecraft applications. The LHP will be operated with anhydrous ammonia as the working fluid to transport thermal energy with high effective conductivity in zero gravity. LHP is a passive, two-phase flow heat transfer device that is capable of transporting up to 400 watts over a distance of 5 meters through semiflexible, small-diameter tubes. It uses capillary forces to circulate the two-phase working fluid. The system is self-priming and totally passive in operation. When heat is applied to the LHP evaporator, part of the working fluid vaporizes. The vapor flows through the vapor transport lines and condenses, releasing heat. The condense returns to the evaporator via capillary action through the liquid transport lines.

Sodium Sulfur Battery Experiment

The Sodium Sulfur Battery Experiment (NaSBE) characterized the performance of four 40 ampere-hour sodium-sulfur battery
Sodium-sulfur battery
A sodium–sulfur battery or liquid metal battery is a type of molten metal battery constructed from sodium and sulfur . This type of battery has a high energy density, high efficiency of charge/discharge and long cycle life, and is fabricated from inexpensive materials...

 cells, representing the first test of sodium-sulfur battery technology in space. Each cell is composed of a sodium anode, sulfur cathode, and solid ceramic sodium ion conducting electrolyte and separator. The cells must be heated to 350 degrees Celsius to liquefy the sodium and sulfur. Once the anode and cathode were liquefied, the cells started to generate electrical power. Once in orbit, a crewmember activated NaSBE and then the experiment was controlled by the GSFC Payload Operations Control Center (POCC).

Turbulent Gas Jet Diffusion Flames

The Turbulent Gas Jet Diffusion Flames (TGDF) payload is a secondary payload that used the standard Get Away Special carrier. Its purpose is to gain an understanding of the fundamental characteristics of transitional and turbulent gas jet diffusion flames under microgravity conditions and to acquire data that will aid in predicting the behavior of transitional and turbulent gas jet diffusion flames under normal and microgravity environments. TGDF will impose large-scale controlled disturbances on well-defined laminar microgravity diffusion flames. The will be on axisymmertic perturbations to laminar flames. The variables for the proposed tests will be the frequency of the disturbance mechanism which will be either 2.5 Hz, 5 Hz, or 7.5 Hz.

Get Away Special

Get Away Special (GAS G-036) payload canister contained four separate experiments that hydrate cement samples, record configuration stability of fluid samples, and expose computer discs, compact discs, and asphalt samples to exosphere conditions in the cargo bay of the orbiter. The experiments are the Cement Mixing Experiment (CME), the Configuration Stability of Fluid Experiment (CSFE), the Computer Compact Disc Evaluation Experiment (CDEE) and the Asphalt Evaluation Experiment (AEE).

Extended Duration Orbiter

The Extended Duration Orbiter
Extended Duration Orbiter
The Extended Duration Orbiter program was a project by NASA to prepare for long-term microgravity research aboard Space Station Freedom, which later evolved into the International Space Station. Scientists and NASA needed practical experience in managing progressively longer times for their...

 (EDO) Pallet is a 15 foot (4.6 m) diameter cryo-kit wafer structure. Weighing 352 kilograms (776 lb), it provides support for tanks, associated control panels, and avionics equipment. The tanks store 167 kilograms (368.2 lb) of liquid hydrogen at −250 degrees Celsius, and 1417 kilograms (3,124 lb) of liquid oxygen at −176 degrees Celsius. Total empty weight of the system is 1620 kilograms (3,571.5 lb). When filled with cryogens, system weight is approximately 3200 kilograms (7,054.8 lb). Oxygen and hydrogen are supplied to the orbiter's three electrical power generating fuel cell
Fuel cell
A fuel cell is a device that converts the chemical energy from a fuel into electricity through a chemical reaction with oxygen or another oxidizing agent. Hydrogen is the most common fuel, but hydrocarbons such as natural gas and alcohols like methanol are sometimes used...

s, where they are converted into sufficient electrical energy to support the average 4 family-member house for approximately 6 months. About 1360 kilograms (2,998.3 lb) of pure drinking water is also produced by the fuel cells. With the EDO pallet, the orbiter can support a flight for a maximum of 18 days. Longer on-orbit missions benefit microgravity research, Life Sciences research, Earth and celestial observations, human adaptation to the zero-G environment, and support to the Space Station.

Middeck Glove Box

The Middeck Glove Box (MGBX) is a facility designed for materials science and biological science experiment handling. It consists of two primary systems; an Interface Frame (IF) and a Glovebox (GB). The MGBX facility (with associated electronics) provides an enclosed working area for experiment manipulation and observation on the shuttle mid-deck. The MGBX experiments on this flight are: WCI – The objective of the Wetting Characteristics of Immiscibles was to investigate the influence of alloy/ampoule wetting characteristics on the segregation of immiscible liquids during microgravity processing. The Enclosed Laminar Flames (ELF) experiment objective was to validate the zero-gravity Burke-Schumann model and the gravity-dependent Hegde-Bahadori extension of the model, investigate the importance of the buoyancy-dependent flow field as affected by oxidizer flow on flame stabilization, examine the state relationships of co-flow diffusion flames under the influence of buoyancy conditions (gravity versus pressure), and study the flow vortex and diffusion flame interactions. The Particle Engulfment and Pushing by Solidifying Interfaces (PEP) experiment objectives were to generate an accurate value for the critical velocity in a convection-free environment, validate present theoretical model, enhance fundamental understanding of dynamics of insoluble particles at liquid/solid interfaces, and improve understanding of physics associated with solidification of liquid metals-ceramic particles mixtures.

Collaborative Ukraine Experiment

The Collaborative Ukraine Experiment (CUE) was a mid-deck payload designed to study the effects of microgravity on plant growth. The CUE is composed of a group of experiments that will be flown in the Plant Growth Facility (PGF) and in the Biological Research in Canisters (BRIC). The experiments also required the use of a Gaseous Nitrogen (GN2) Freezer and the fixation hardware. Investigators in Ukraine and the United States selected the experiments as a model for scientific collaboration between the two countries. The PGF supported plant growth for up to 30 days by providing acceptable environmental conditions for normal plant growth. The PGF is composed of the following subsystems: Control and Data Management Subsystems (CDMS), Fluorescent Light Module (FLM), Atmospheric Control Module (ACM), Plant Growth Chambers (PGCs), Support Structure Assembly (SSA), and the Generic External Shell (GES). The complete PGF replaced one mid-deck locker and operated on 28 V direct current (dc) power. The plant specimen studied in the PGF was Brassica rapa (turnip).

Extra-vehicular Activities

The Extravehicular Activity Development Flight Test – 05 (EDFT-05) consists of the payload bay hardware elements of Detailed Test Objective (DTO) 671, EVA Hardware for Future Scheduled Extravehicular Missions. EDFT – 05's main objective is to demonstrate International Space Station (ISS) on-orbit, end-to-end EVA assembly and maintenance operations. The other DTO's included in this test are DTO 672, Extravehicular Mobility Unit (EMU) Electrical Cuff Checklist and DTO 833, EMU Thermal Comfort and EVA Worksite Thermal Environment. Another objective is to expand the EVA experience base for ground and flight crews. Two EVA's will be performed on this mission to accomplish these DTO's.

Autonomous EVA Robotic Camera

The Autonomous EVA Robotic Camera/Sprint (AERCam/Sprint) is a small, unobtrusive, free-flying camera platform for use outside a spacecraft. The free-flyer has a self contained cold gas propulsion system giving it the capability to be propelled with a 6 degrees of freedom control system. On board the free-flyer are rate sensors to provide data for an automatic attitude hold capability. AERCam/Sprint is a spherical vehicle that moves slowly and is covered in a soft cushioning material to prevent damage in the event of an impact. The design philosophy is to keep the energy low by keeping the velocities and mass low while providing a mechanism to absorb any energy from an impact. The free-flyer platform is controlled from inside the Orbiter by using a small control station. The operator inputs motion commands from a single, Aid For EVA Rescue (SAFER) device controller. The commands are sent from the control station to the free-flyer via a Radio Frequency (RF) modem link operating in the ultra high frequency (UHF) range.

See also

  • Space science
    Space science
    The term space science may mean:* The study of issues specifically related to space travel and space exploration, including space medicine.* Science performed in outer space ....

  • Space shuttle
    Space Shuttle
    The Space Shuttle was a manned orbital rocket and spacecraft system operated by NASA on 135 missions from 1981 to 2011. The system combined rocket launch, orbital spacecraft, and re-entry spaceplane with modular add-ons...

  • List of space shuttle missions
  • List of human spaceflights chronologically

External links

The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK