Saturation arithmetic
Encyclopedia
Saturation arithmetic is a version of arithmetic
in which all operations such as addition and multiplication are limited to a fixed range between a minimum and maximum value. If the result of an operation is greater than the maximum it is set ("clamped") to the maximum, while if it is below the minimum it is clamped to the minimum. The name comes from how the value becomes "saturated" once it reaches the extreme values; further additions to a maximum or subtractions from a minimum will not change the result.
For example, if the valid range of values is from -100 to 100, the following operations produce the following values:
As can be seen from these examples, familiar properties like associativity
and distributivity
fail in saturation arithmetic. This makes it unpleasant to deal with in abstract mathematics, but it has an important role to play in digital hardware and algorithms.
Typically, early computer microprocessor
s did not implement integer arithmetic operations using saturation arithmetic; instead, they used the easier-to-implement modular arithmetic
, in which values exceeding the maximum value "wrap around
" to the minimum value, like the hours on a clock passing from 12 to 1. In hardware, modular arithmetic with a minimum of zero and a maximum of 2n can be implemented by simply discarding all but the lowest n bits.
However, although more difficult to implement, saturation arithmetic has numerous practical advantages. The result is as numerically close to the true answer as possible; it's considerably less surprising to get an answer of 127 instead of 130 than to get an answer of −126 instead of 130. It also enables overflow of additions and multiplications to be detected consistently without an overflow bit or excessive computation by simple comparison with the maximum or minimum value (provided the datum is not permitted to take on these values).
Additionally, saturation arithmetic enables efficient algorithms for many problems, particularly in digital signal processing
. For example, adjusting the volume level of a sound signal can result in overflow, and saturation causes significantly less distortion to the sound than wrap-around. In the words of researchers G. A. Constantinides et al.:
Saturation arithmetic operations are available on many modern platforms, and in particular was one of the extensions made by the Intel MMX platform, specifically for such signal processing applications.
Saturation arithmetic for integers has also been implemented in software for a number of programming languages including C
, C++
, Eiffel
. This helps programmers anticipate and understand the effects of overflow better. On the other hand, saturation is challenging to implement efficiently in software on a machine with only modular arithmetic operations, since simple implementations require branches that create huge pipeline delays.
Although saturation arithmetic is less popular for integer arithmetic in hardware, the IEEE floating-point standard
, the most popular abstraction for dealing with approximate real numbers, uses a form of saturation in which overflow is converted into "infinity" or "negative infinity", and any other operation on this result continues to produce the same value. This has the advantage over simple saturation that later operations which decrease the value will not end up producing a "reasonable" result, such as in the computation .
Arithmetic
Arithmetic or arithmetics is the oldest and most elementary branch of mathematics, used by almost everyone, for tasks ranging from simple day-to-day counting to advanced science and business calculations. It involves the study of quantity, especially as the result of combining numbers...
in which all operations such as addition and multiplication are limited to a fixed range between a minimum and maximum value. If the result of an operation is greater than the maximum it is set ("clamped") to the maximum, while if it is below the minimum it is clamped to the minimum. The name comes from how the value becomes "saturated" once it reaches the extreme values; further additions to a maximum or subtractions from a minimum will not change the result.
For example, if the valid range of values is from -100 to 100, the following operations produce the following values:
- 60 + 43 = 100
- (60 + 43) − 150 = −50
- 43 − 150 = −100
- 60 + (43 − 150) = −40
- 10 × 11 = 100
- 99 × 99 = 100
- 30 × (5 − 1) = 100
- 30 × 5 − 30 × 1 = 70
As can be seen from these examples, familiar properties like associativity
Associativity
In mathematics, associativity is a property of some binary operations. It means that, within an expression containing two or more occurrences in a row of the same associative operator, the order in which the operations are performed does not matter as long as the sequence of the operands is not...
and distributivity
Distributivity
In mathematics, and in particular in abstract algebra, distributivity is a property of binary operations that generalizes the distributive law from elementary algebra.For example:...
fail in saturation arithmetic. This makes it unpleasant to deal with in abstract mathematics, but it has an important role to play in digital hardware and algorithms.
Typically, early computer microprocessor
Microprocessor
A microprocessor incorporates the functions of a computer's central processing unit on a single integrated circuit, or at most a few integrated circuits. It is a multipurpose, programmable device that accepts digital data as input, processes it according to instructions stored in its memory, and...
s did not implement integer arithmetic operations using saturation arithmetic; instead, they used the easier-to-implement modular arithmetic
Modular arithmetic
In mathematics, modular arithmetic is a system of arithmetic for integers, where numbers "wrap around" after they reach a certain value—the modulus....
, in which values exceeding the maximum value "wrap around
Integer overflow
In computer programming, an integer overflow occurs when an arithmetic operation attempts to create a numeric value that is too large to be represented within the available storage space. For instance, adding 1 to the largest value that can be represented constitutes an integer overflow...
" to the minimum value, like the hours on a clock passing from 12 to 1. In hardware, modular arithmetic with a minimum of zero and a maximum of 2n can be implemented by simply discarding all but the lowest n bits.
However, although more difficult to implement, saturation arithmetic has numerous practical advantages. The result is as numerically close to the true answer as possible; it's considerably less surprising to get an answer of 127 instead of 130 than to get an answer of −126 instead of 130. It also enables overflow of additions and multiplications to be detected consistently without an overflow bit or excessive computation by simple comparison with the maximum or minimum value (provided the datum is not permitted to take on these values).
Additionally, saturation arithmetic enables efficient algorithms for many problems, particularly in digital signal processing
Digital signal processing
Digital signal processing is concerned with the representation of discrete time signals by a sequence of numbers or symbols and the processing of these signals. Digital signal processing and analog signal processing are subfields of signal processing...
. For example, adjusting the volume level of a sound signal can result in overflow, and saturation causes significantly less distortion to the sound than wrap-around. In the words of researchers G. A. Constantinides et al.:
Saturation arithmetic operations are available on many modern platforms, and in particular was one of the extensions made by the Intel MMX platform, specifically for such signal processing applications.
Saturation arithmetic for integers has also been implemented in software for a number of programming languages including C
C (programming language)
C is a general-purpose computer programming language developed between 1969 and 1973 by Dennis Ritchie at the Bell Telephone Laboratories for use with the Unix operating system....
, C++
C++
C++ is a statically typed, free-form, multi-paradigm, compiled, general-purpose programming language. It is regarded as an intermediate-level language, as it comprises a combination of both high-level and low-level language features. It was developed by Bjarne Stroustrup starting in 1979 at Bell...
, Eiffel
Eiffel (programming language)
Eiffel is an ISO-standardized, object-oriented programming language designed by Bertrand Meyer and Eiffel Software. The design of the language is closely connected with the Eiffel programming method...
. This helps programmers anticipate and understand the effects of overflow better. On the other hand, saturation is challenging to implement efficiently in software on a machine with only modular arithmetic operations, since simple implementations require branches that create huge pipeline delays.
Although saturation arithmetic is less popular for integer arithmetic in hardware, the IEEE floating-point standard
IEEE floating-point standard
IEEE 754–1985 was an industry standard for representingfloating-pointnumbers in computers, officially adopted in 1985 and superseded in 2008 byIEEE 754-2008. During its 23 years, it was the most widely used format for...
, the most popular abstraction for dealing with approximate real numbers, uses a form of saturation in which overflow is converted into "infinity" or "negative infinity", and any other operation on this result continues to produce the same value. This has the advantage over simple saturation that later operations which decrease the value will not end up producing a "reasonable" result, such as in the computation .
External links
- SARITH: Safe ARITHmetic – A Progress Report: Report on a saturation arithmetic component for EiffelEiffel (programming language)Eiffel is an ISO-standardized, object-oriented programming language designed by Bertrand Meyer and Eiffel Software. The design of the language is closely connected with the Eiffel programming method...
.