Schreckstoff
Encyclopedia
In 1938, the Austrian ethologist Karl von Frisch
made his first report on the existence of the chemical alarm signal known as Schreckstoff in minnows. An alarm signal is a response produced by an individual, the “sender,” reacting to a hazard that warns other animals, the receivers, that there is danger (Smith 1992). This chemical alarm signal is only released when the sender incurs mechanical damage, such as when it has been caught by a predator. When this signal reaches the receivers, they perceive a greater predation risk and exhibit an antipredator response. Although the benefits to the receivers seem straightforward, it is difficult to determine the fitness benefit to the sender which is required for the maintenance of this trait via natural selection
. While the evolution
of this signal was once a topic of great debate, recent evidence suggests that scheckstoff evolved as a defense against environmental stressors such as pathogen
s, parasites
and UVB radiation
and that it was later co-opted by predators and prey as a chemical signal.
(e.g., minnows, characins
, catfishes, etc.). Approximately 64% of all freshwater fish species and 27% of all fish species worldwide are found in the ostariophysan superorder, which highlights the widespread use and importance of this chemical alarm system in fishes (Nelson 1994).
Production of and responses to schreckstoff change over the course of ontogeny
. For example, young brook stickleback
(Culaea inconstans) are more likely to be caught in minnow traps that have been baited with conspecific skin extracts than adults (Chivers and Smith 1994). This result indicates that young brook sticklebacks do not make the association between schreckstoff and the potential presence of a predator as readily as adult brook sticklebacks. Whether this association strengthens over time as a result of learning
or physiological development remains unclear (Chivers and Smith 1994).
In addition to changes across ontogeny, the degree to which schreckstoff is produced varies within the breeding season. Male fathead minnows (Pimephales promelas) cease production of schreckstoff during the breeding season, but still exhibit antipredator behaviors in response to schreckstoff during this time (Smith 1973). It has been postulated that schreckstoff production is halted at this time because male fathead minnows will often incur mechanical damage while building their nests. It would be detrimental to a male to produce schreckstoff while building a nest, as it would inadvertently repel females, thereby decreasing the likelihood of obtaining a mate. By ceasing schreckstoff production during the breeding season, males circumvent this problem. The cessation of alarm substance cell production appears to be controlled by androgens (Smith 1973).
(Smith 1992). Support for this hypothesis would include evidence that individuals live in groups of closely related kin and that the release of chemical alarm signals increases the likelihood that related individuals will avoid predation. The second hypothesis, predator attraction, suggests that the release of schreckstoff may attract additional predators which will interfere with the predation event, increasing the likelihood that the prey will escape and survive the attack. This hypothesis assumes that predators will be attracted to schreckstoff and will interfere with one another either through competition
for the captured prey or through predation of one another. It additionally assumes that, despite the fact that the prey has already incurred mechanical damage, it is possible for the prey to escape and recover from the attack. Testing and validating these assumptions would provide support for the predator attraction hypothesis. The final hypothesis proposes that schreckstoff has an immune function, providing protection against pathogen
s, parasites
and/or UVB radiation
. For this hypothesis to be supported, a correlation between alarm substance cell production and the presence of pathogens and parasites would need to be observed. Direct evidence that schreckstoff inhibits the growth of aquatic pathogens and parasites would provide additional support for the immunity hypothesis.
would have to be great. Under the framework of kin selection, behaviors that are seemingly detrimental to the sender are selected for because they benefit individuals who are likely to share alleles by common descent
. In this way, the frequency of the sender’s alleles in the next generation is increased via their presence in successful kin.
In order to apply kin selection theory to the evolution of schreckstoff, a number of conditions must be met. First, there must be evidence that the release of schreckstoff by the sender confers benefits to the receivers. Second, it must be shown that individuals in the order Ostariophysan associate mainly with family members. If either of these two assumptions is violated, then the kin selection hypothesis would not be supported.
Some evidence exists in support of the first assumption that the release of schreckstoff confers quantifiable advantages to the receivers of this chemical signal. A laboratory experiment conducted by Mathis and Smith (1992) revealed that fathead minnows exposed to conspecific schreckstoff survived 39.5% longer than controls when placed in a tank with a predatory northern pike
(Esox lucius). This finding suggests that schreckstoff increases vigilance in receivers, resulting in a quicker reaction time following detection of the predator.
The second assumption, that individuals in the order Ostariophysan associate with close family members, does not appear to be supported by empirical
evidence. Naish et al. (1993) examined shoals
of European minnows (Phoxinus phoxinus) and found no difference in relatedness within and between shoals, indicating that individuals are not associating more closely with relatives than nonrelatives. Shoal composition has not been examined in all members of the Ostariophysan order and shoals composed entirely of family members may yet be discovered. Nevertheless, the finding that schreckstoff production is maintained in a species where the function is clearly unrelated to kin benefits provides strong evidence against kin selection as a mechanism for the evolution of schreckstoff.
Fathead minnows have also been found to produce fewer epidermal alarm substance cells (and therefore less schreckstoff) when in the presence of familiar shoalmates (Wisenden and Smith 1998). The results of this study indicate one of two scenarios, neither of which are compatible with the hypothesis that schreckstoff evolved via kin selection. First, if schreckstoff evolved via kin selection, we would expect more epidermal alarm substance cells to be produced in the presence of kin than nonkin. This means that familiar shoalmates in fathead minnows should be closely related kin and schreckstoff production should be increased when in shoals with familiar individuals. The Wisenden and Smith (1998) study did not find this to be the case. Second, these results indicate that individuals either do not associate with kin at all or that production of schreckstoff varies depending on how familiar the focal fish is with the individuals with which it shoals. In conclusion, evidence does not support the hypothesis that schreckstoff evolved because it bolstered the inclusive fitness
of the sender through increased survival of kin.
that the prey will escape. Third, the sender must be able to recover from the mechanical damage incurred during the predation event.
A study conducted by Mathis et al. (1995) provides support for the first condition that the release of schreckstoff must attract predators. This experiment revealed that schreckstoff extracted from the skin of fathead minnows attracted both northern pike (Esox lucius) and predaceous diving beetles (Colymbetes sculptilis). Additionally, a natural study showed that predatory fish were seven times more likely to strike a lure baited with a sponge soaked in fathead minnow skin extract than a sponge soaked in either water or skin extract from a non-Ostariophysan convict cichlid
(which presumably does not produce schreckstoff) (Wisenden and Thiel 2002).
While the previous two studies provided examples of systems in which schreckstoff acts to attract additional predators, Cashner (2004) found a system for which this was not the case. Spotted bass
(Micropterus punctulatus) were exposed to skin (containing schreckstoff) and muscle (control, containing no schreckstoff) extracts from five different co-occurring prey species. The spotted bass were not attracted to any of the schreckstoff treatments. This result indicates that schreckstoff does not always attract relevant predators in the area. Cashner additionally called into question the results of the previous study conducted by Mathis et al. (1995) by pointing out that northern pike are an introduced species
in many areas and therefore were not likely to be coevolving with fathead minnows during the evolution of the schreckstoff system. He suggested that his system was more ecologically relevant and that there was little evidence to suggest that schreckstoff evolved as a predator attractant. In conclusion, the debate continues over whether or not the first condition for this hypothesis has been met.
The second condition that needs to be met in support of the predator attraction hypothesis is that additional predators must occasionally disrupt predation events, increasing the probability that prey will escape. In the northern pike/fathead minnow system, it has been proposed that additional northern pike interfere with a predation event in one of two ways (Mathis et al. 1995). First, additional northern pike of the same size interfere with a predation event by coming into contact with the main predator (biting it, etc.). Second, additional pike of larger size attracted to schreckstoff may depredate the initial predator.
Chivers et al. (1996) showed that the probability that fathead minnows escape after being captured by a northern pike significantly increases when a second pike interferes with the predation event. The authors also pointed out that northern pike have an age-structured population that is biased towards younger, smaller individuals. If a younger pike attacks a fathead minnow and attracts an older, larger conspecific, then the younger pike may be at risk of cannibalism and will be inclined to release the prey in order to focus on escape. In regards to the second condition, additional predators do appear to disrupt predation events, increasing the probability that the sender will escape. The final condition, that individuals need to successfully recover from a predation event, appears to be satisfied. Support for this condition comes from the observation that many small fishes in natural populations exhibit scars, presumably from failed predator attempts (Smith and Lemly 1986; Reimchem 1988).
While the evidence that schreckstoff attracts predators is mixed, studies indicate that multiple predators will interfere with each other and that prey can recover from predation events when they manage to escape. The extent to which predators are attracted to a predation event depends upon the speed at which schreckstoff diffuses through its aquatic environment, which in turn depends upon water flow parameters. This hypothesis indicates that schreckstoff evolved as a way of increasing the probability of survival during a predation event and its role as a predator cue for conspecifics evolved subsequently. Supported by more empirical studies than the kin selection hypothesis, the predator attraction hypothesis remained popular for quite some time.
The role of schreckstoff in immune response was further strengthened by the finding that skin extracts from fathead minnows inhibited the growth of Saprolegnia ferax (a water mould) in culture. In contrast, skin extracts from swordtails (Xiphophorus
helleri), which are not believed to produce schreckstoff, increased S. ferax growth compared to controls. Chivers et al. (2007) were also able to demonstrate that cadmium
(Cd), a heavy metal that is an immunosuppressant in vertebrates (Sanchez-Dardon et al. 1999), inhibits the production of alarm cells when fishes are infected with Saprolegnia
. Furthermore, a follow up study by Halbgewachs et al. (2009) treated fathead minnows with cortisol, a well known immunosuppressant, which significantly reduced alarm cell investment in conjunction with leukocyte activity. The results of these extensive studies strongly suggest that schreckstoff’s main function is to provide immunity against a number of environmental threats aimed at the fishes’ epidermis.
If schreckstoff evolved as a defense against pathogens, parasites and UVB radiation, then the release of schreckstoff into the environment subsequently allowed for both predators and prey to exploit this system. Predators in some systems may use schreckstoff as a cue for an easy meal, either by disrupting the predation event in order to steal the prey item for themselves or by depredating the initial predator. Nearby conspecifics then exploit schreckstoff as a chemical cue, alerting them to the presence of a predator in the area.
The role of schreckstoff as an immune response has additional implications in this age of increasing environmental change (Chivers et al. 2007). Environmental stressors, including UVB radiation, pollution and parasites, are increasing in the environment and are likely to continue increasing over time. UVB radiation exposure is increasing due to decreases in stratospheric ozone (Blaustein et al. 1997), diseases are becoming increasingly important at both local and global scales (Kiesecker et al. 2004) and pollutants, including heavy metals
, are being introduced into ecosystems (Jenson & Bro-Rasmussen 1992). If cadmium, the heavy metal affecting the fishes’ ability to produce schreckstoff in response to environmental stressors, increased in concentration in the environment, the immune response of many Ostariophysan fishes would be compromised (Chivers et al. 2007).
Karl von Frisch
Karl Ritter von Frisch was an Austrian ethologist who received the Nobel Prize in Physiology or Medicine in 1973, along with Nikolaas Tinbergen and Konrad Lorenz....
made his first report on the existence of the chemical alarm signal known as Schreckstoff in minnows. An alarm signal is a response produced by an individual, the “sender,” reacting to a hazard that warns other animals, the receivers, that there is danger (Smith 1992). This chemical alarm signal is only released when the sender incurs mechanical damage, such as when it has been caught by a predator. When this signal reaches the receivers, they perceive a greater predation risk and exhibit an antipredator response. Although the benefits to the receivers seem straightforward, it is difficult to determine the fitness benefit to the sender which is required for the maintenance of this trait via natural selection
Natural selection
Natural selection is the nonrandom process by which biologic traits become either more or less common in a population as a function of differential reproduction of their bearers. It is a key mechanism of evolution....
. While the evolution
Evolution
Evolution is any change across successive generations in the heritable characteristics of biological populations. Evolutionary processes give rise to diversity at every level of biological organisation, including species, individual organisms and molecules such as DNA and proteins.Life on Earth...
of this signal was once a topic of great debate, recent evidence suggests that scheckstoff evolved as a defense against environmental stressors such as pathogen
Pathogen
A pathogen gignomai "I give birth to") or infectious agent — colloquially, a germ — is a microbe or microorganism such as a virus, bacterium, prion, or fungus that causes disease in its animal or plant host...
s, parasites
Parasitism
Parasitism is a type of symbiotic relationship between organisms of different species where one organism, the parasite, benefits at the expense of the other, the host. Traditionally parasite referred to organisms with lifestages that needed more than one host . These are now called macroparasites...
and UVB radiation
Radiation
In physics, radiation is a process in which energetic particles or energetic waves travel through a medium or space. There are two distinct types of radiation; ionizing and non-ionizing...
and that it was later co-opted by predators and prey as a chemical signal.
Background
Chemical alarm systems have been identified in a number of different taxa, including gastropods (Stenzler and Atema 1997; Atema and Stenzler 1977), echinoderms (Snyder and Snyder 1970), amphibians (Hews and Blaustein 1985; Hews 1998; Lutterschmidt et al. 1994) and fishes (see Smith 1992 for review). One of the most well-studied chemical alarm signals is schreckstoff, the use of which is widespread in the superorder OstariophysiOstariophysi
Ostariophysi is the second-largest superorder of fish. Members of this superorder are called ostariophysians. This diverse group contains almost 8,000 species, about 28% of known fish species in the world and 68% of freshwater species, and are present on all major continents except Antarctica...
(e.g., minnows, characins
Characidae
The Characidae, characids or characins are a family of freshwater subtropical and tropical fish, belonging to the order Characiformes. The name "characins" is the historical one, but scientists today tend to prefer "characids" to reflect their status as a by and large monophyletic group at family...
, catfishes, etc.). Approximately 64% of all freshwater fish species and 27% of all fish species worldwide are found in the ostariophysan superorder, which highlights the widespread use and importance of this chemical alarm system in fishes (Nelson 1994).
Schreckstoff in Ostariophysans
The putative active ingredient in schreckstoff is hypoxanthine-3N-oxide (H3NO), which is produced in what will henceforth be referred to as alarm substance cells (Argentini 1976; Pfeiffer 1982). Brown et al. (2000) identified the nitrogen oxide functional group to be the main chemical trigger of antipredator behavior in receivers. The production of schreckstoff has been shown to be metabolically expensive and is therefore part of a conditional strategy that can only be employed by individuals with access to sufficient resources (Wisenden and Smith 1998).Production of and responses to schreckstoff change over the course of ontogeny
Ontogeny
Ontogeny is the origin and the development of an organism – for example: from the fertilized egg to mature form. It covers in essence, the study of an organism's lifespan...
. For example, young brook stickleback
Brook stickleback
The Brook stickleback is a small freshwater fish that is distributed across the US and Canada. It grows to a length of about 2 inches. It occupies the northern part of the eastern United States, as well as the southern half of Canada...
(Culaea inconstans) are more likely to be caught in minnow traps that have been baited with conspecific skin extracts than adults (Chivers and Smith 1994). This result indicates that young brook sticklebacks do not make the association between schreckstoff and the potential presence of a predator as readily as adult brook sticklebacks. Whether this association strengthens over time as a result of learning
Learning
Learning is acquiring new or modifying existing knowledge, behaviors, skills, values, or preferences and may involve synthesizing different types of information. The ability to learn is possessed by humans, animals and some machines. Progress over time tends to follow learning curves.Human learning...
or physiological development remains unclear (Chivers and Smith 1994).
In addition to changes across ontogeny, the degree to which schreckstoff is produced varies within the breeding season. Male fathead minnows (Pimephales promelas) cease production of schreckstoff during the breeding season, but still exhibit antipredator behaviors in response to schreckstoff during this time (Smith 1973). It has been postulated that schreckstoff production is halted at this time because male fathead minnows will often incur mechanical damage while building their nests. It would be detrimental to a male to produce schreckstoff while building a nest, as it would inadvertently repel females, thereby decreasing the likelihood of obtaining a mate. By ceasing schreckstoff production during the breeding season, males circumvent this problem. The cessation of alarm substance cell production appears to be controlled by androgens (Smith 1973).
Hypotheses for the evolution of schreckstoff
A number of different hypotheses have been proposed for the evolution of schreckstoff (see Smith 1992 for a review). The first hypothesis is that the evolution of schreckstoff has been driven by kin selectionKin selection
Kin selection refers to apparent strategies in evolution that favor the reproductive success of an organism's relatives, even at a cost to the organism's own survival and reproduction. Charles Darwin was the first to discuss the concept of group/kin selection...
(Smith 1992). Support for this hypothesis would include evidence that individuals live in groups of closely related kin and that the release of chemical alarm signals increases the likelihood that related individuals will avoid predation. The second hypothesis, predator attraction, suggests that the release of schreckstoff may attract additional predators which will interfere with the predation event, increasing the likelihood that the prey will escape and survive the attack. This hypothesis assumes that predators will be attracted to schreckstoff and will interfere with one another either through competition
Competition
Competition is a contest between individuals, groups, animals, etc. for territory, a niche, or a location of resources. It arises whenever two and only two strive for a goal which cannot be shared. Competition occurs naturally between living organisms which co-exist in the same environment. For...
for the captured prey or through predation of one another. It additionally assumes that, despite the fact that the prey has already incurred mechanical damage, it is possible for the prey to escape and recover from the attack. Testing and validating these assumptions would provide support for the predator attraction hypothesis. The final hypothesis proposes that schreckstoff has an immune function, providing protection against pathogen
Pathogen
A pathogen gignomai "I give birth to") or infectious agent — colloquially, a germ — is a microbe or microorganism such as a virus, bacterium, prion, or fungus that causes disease in its animal or plant host...
s, parasites
Parasitism
Parasitism is a type of symbiotic relationship between organisms of different species where one organism, the parasite, benefits at the expense of the other, the host. Traditionally parasite referred to organisms with lifestages that needed more than one host . These are now called macroparasites...
and/or UVB radiation
Radiation
In physics, radiation is a process in which energetic particles or energetic waves travel through a medium or space. There are two distinct types of radiation; ionizing and non-ionizing...
. For this hypothesis to be supported, a correlation between alarm substance cell production and the presence of pathogens and parasites would need to be observed. Direct evidence that schreckstoff inhibits the growth of aquatic pathogens and parasites would provide additional support for the immunity hypothesis.
Kin selection hypothesis
One of the first hypotheses for the evolution of schreckstoff centered on W.D. Hamilton’s theory of kin selection (Hamilton 1963, 1964a, 1964b). Under the theory of kin selection, the sender of the chemical alarm signal would be willing to incur the costs of sending this signal if the benefits to related individuals were sufficiently high. In a situation where the sender of the signal is paying great costs (i.e., it releases the chemical alarm signal because it has incurred potentially mortal mechanical damage), the benefits to closely related kinKin
-Places:* Kin, Okinawa, a town in Okinawa, Japan* Kin, Pakistan, a village along the Indus in Pakistan* Kin, Mogok, a village in Mogok Township, Burma * Kin, Ye, a village in Ye Township, Burma...
would have to be great. Under the framework of kin selection, behaviors that are seemingly detrimental to the sender are selected for because they benefit individuals who are likely to share alleles by common descent
Common descent
In evolutionary biology, a group of organisms share common descent if they have a common ancestor. There is strong quantitative support for the theory that all living organisms on Earth are descended from a common ancestor....
. In this way, the frequency of the sender’s alleles in the next generation is increased via their presence in successful kin.
In order to apply kin selection theory to the evolution of schreckstoff, a number of conditions must be met. First, there must be evidence that the release of schreckstoff by the sender confers benefits to the receivers. Second, it must be shown that individuals in the order Ostariophysan associate mainly with family members. If either of these two assumptions is violated, then the kin selection hypothesis would not be supported.
Some evidence exists in support of the first assumption that the release of schreckstoff confers quantifiable advantages to the receivers of this chemical signal. A laboratory experiment conducted by Mathis and Smith (1992) revealed that fathead minnows exposed to conspecific schreckstoff survived 39.5% longer than controls when placed in a tank with a predatory northern pike
Northern Pike
The northern pike , is a species of carnivorous fish of the genus Esox...
(Esox lucius). This finding suggests that schreckstoff increases vigilance in receivers, resulting in a quicker reaction time following detection of the predator.
The second assumption, that individuals in the order Ostariophysan associate with close family members, does not appear to be supported by empirical
Empirical
The word empirical denotes information gained by means of observation or experimentation. Empirical data are data produced by an experiment or observation....
evidence. Naish et al. (1993) examined shoals
Shoaling and schooling
In biology, any group of fish that stay together for social reasons are said to be shoaling , and if, in addition, the group is swimming in the same direction in a coordinated manner, they are said to be schooling . In common usage, the terms are sometimes used rather loosely...
of European minnows (Phoxinus phoxinus) and found no difference in relatedness within and between shoals, indicating that individuals are not associating more closely with relatives than nonrelatives. Shoal composition has not been examined in all members of the Ostariophysan order and shoals composed entirely of family members may yet be discovered. Nevertheless, the finding that schreckstoff production is maintained in a species where the function is clearly unrelated to kin benefits provides strong evidence against kin selection as a mechanism for the evolution of schreckstoff.
Fathead minnows have also been found to produce fewer epidermal alarm substance cells (and therefore less schreckstoff) when in the presence of familiar shoalmates (Wisenden and Smith 1998). The results of this study indicate one of two scenarios, neither of which are compatible with the hypothesis that schreckstoff evolved via kin selection. First, if schreckstoff evolved via kin selection, we would expect more epidermal alarm substance cells to be produced in the presence of kin than nonkin. This means that familiar shoalmates in fathead minnows should be closely related kin and schreckstoff production should be increased when in shoals with familiar individuals. The Wisenden and Smith (1998) study did not find this to be the case. Second, these results indicate that individuals either do not associate with kin at all or that production of schreckstoff varies depending on how familiar the focal fish is with the individuals with which it shoals. In conclusion, evidence does not support the hypothesis that schreckstoff evolved because it bolstered the inclusive fitness
Inclusive fitness
In evolutionary biology and evolutionary psychology, the inclusive fitness of an organism is the sum of its classical fitness and the number of equivalents of its own offspring it can add to the population by supporting others...
of the sender through increased survival of kin.
Predator attractant hypothesis
The predator attractant hypothesis proposes that the main purpose of schreckstoff is to attract additional predators to the area (Smith 1992). According to this hypothesis, additional predators will interact with the initial predator, and these interactions will provide the sender with an opportunity to escape. A number of conditions must be met to support this hypothesis. First, schreckstoff must attract predators. Second, subsequent predators must disrupt the predation event, thereby increasing the probabilityProbability
Probability is ordinarily used to describe an attitude of mind towards some proposition of whose truth we arenot certain. The proposition of interest is usually of the form "Will a specific event occur?" The attitude of mind is of the form "How certain are we that the event will occur?" The...
that the prey will escape. Third, the sender must be able to recover from the mechanical damage incurred during the predation event.
A study conducted by Mathis et al. (1995) provides support for the first condition that the release of schreckstoff must attract predators. This experiment revealed that schreckstoff extracted from the skin of fathead minnows attracted both northern pike (Esox lucius) and predaceous diving beetles (Colymbetes sculptilis). Additionally, a natural study showed that predatory fish were seven times more likely to strike a lure baited with a sponge soaked in fathead minnow skin extract than a sponge soaked in either water or skin extract from a non-Ostariophysan convict cichlid
Cichlid
Cichlids are fishes from the family Cichlidae in the order Perciformes. Cichlids are members of a group known as the Labroidei along with the wrasses , damselfish , and surfperches . This family is both large and diverse. At least 1,300 species have been scientifically described, making it one of...
(which presumably does not produce schreckstoff) (Wisenden and Thiel 2002).
While the previous two studies provided examples of systems in which schreckstoff acts to attract additional predators, Cashner (2004) found a system for which this was not the case. Spotted bass
Spotted bass
The Spotted Bass , also called "Spotty", "Leeman", or "Spots" in various fishing communities, is a species of freshwater fish sunfish family of order Perciformes. One of the black basses, it is native to the Mississippi River basin and across theGulf States, from central Texas through the Florida...
(Micropterus punctulatus) were exposed to skin (containing schreckstoff) and muscle (control, containing no schreckstoff) extracts from five different co-occurring prey species. The spotted bass were not attracted to any of the schreckstoff treatments. This result indicates that schreckstoff does not always attract relevant predators in the area. Cashner additionally called into question the results of the previous study conducted by Mathis et al. (1995) by pointing out that northern pike are an introduced species
Introduced species
An introduced species — or neozoon, alien, exotic, non-indigenous, or non-native species, or simply an introduction, is a species living outside its indigenous or native distributional range, and has arrived in an ecosystem or plant community by human activity, either deliberate or accidental...
in many areas and therefore were not likely to be coevolving with fathead minnows during the evolution of the schreckstoff system. He suggested that his system was more ecologically relevant and that there was little evidence to suggest that schreckstoff evolved as a predator attractant. In conclusion, the debate continues over whether or not the first condition for this hypothesis has been met.
The second condition that needs to be met in support of the predator attraction hypothesis is that additional predators must occasionally disrupt predation events, increasing the probability that prey will escape. In the northern pike/fathead minnow system, it has been proposed that additional northern pike interfere with a predation event in one of two ways (Mathis et al. 1995). First, additional northern pike of the same size interfere with a predation event by coming into contact with the main predator (biting it, etc.). Second, additional pike of larger size attracted to schreckstoff may depredate the initial predator.
Chivers et al. (1996) showed that the probability that fathead minnows escape after being captured by a northern pike significantly increases when a second pike interferes with the predation event. The authors also pointed out that northern pike have an age-structured population that is biased towards younger, smaller individuals. If a younger pike attacks a fathead minnow and attracts an older, larger conspecific, then the younger pike may be at risk of cannibalism and will be inclined to release the prey in order to focus on escape. In regards to the second condition, additional predators do appear to disrupt predation events, increasing the probability that the sender will escape. The final condition, that individuals need to successfully recover from a predation event, appears to be satisfied. Support for this condition comes from the observation that many small fishes in natural populations exhibit scars, presumably from failed predator attempts (Smith and Lemly 1986; Reimchem 1988).
While the evidence that schreckstoff attracts predators is mixed, studies indicate that multiple predators will interfere with each other and that prey can recover from predation events when they manage to escape. The extent to which predators are attracted to a predation event depends upon the speed at which schreckstoff diffuses through its aquatic environment, which in turn depends upon water flow parameters. This hypothesis indicates that schreckstoff evolved as a way of increasing the probability of survival during a predation event and its role as a predator cue for conspecifics evolved subsequently. Supported by more empirical studies than the kin selection hypothesis, the predator attraction hypothesis remained popular for quite some time.
Schreckstoff as a possible defense against pathogens, parasites and UVB radiation
The final hypothesis posits that schreckstoff has an immune function and may be the first line of defense against pathogens, parasites and/or UVB radiation. Evidence for this hypothesis is strong. A recent comprehensive study by Chivers et al. (2007) revealed that exposure to parasites and pathogens that penetrate the skin of Ostariophysans stimulated the production of alarm cells. Additionally, increased exposure to UV radiation was correlated with an increase in alarm cell production.The role of schreckstoff in immune response was further strengthened by the finding that skin extracts from fathead minnows inhibited the growth of Saprolegnia ferax (a water mould) in culture. In contrast, skin extracts from swordtails (Xiphophorus
Xiphophorus
Xiphophorus is a genus of euryhaline and freshwater fishes in the family Poeciliidae of order Cyprinodontiformes. The many Xiphophorus species are all called either platyfish or swordtails. The type species is X. hellerii, the Green swordtail. Platyfish and swordtails are Live-bearers, meaning...
helleri), which are not believed to produce schreckstoff, increased S. ferax growth compared to controls. Chivers et al. (2007) were also able to demonstrate that cadmium
Cadmium
Cadmium is a chemical element with the symbol Cd and atomic number 48. This soft, bluish-white metal is chemically similar to the two other stable metals in group 12, zinc and mercury. Similar to zinc, it prefers oxidation state +2 in most of its compounds and similar to mercury it shows a low...
(Cd), a heavy metal that is an immunosuppressant in vertebrates (Sanchez-Dardon et al. 1999), inhibits the production of alarm cells when fishes are infected with Saprolegnia
Saprolegnia
Saprolegnia is a genus of freshwater mould often called a "cotton mould" because of the characteristic white or grey fibrous patches it forms. Current taxonomy puts Saprolegnia as a genus of the heterokonts in the order Saprolegniales.-Habits:...
. Furthermore, a follow up study by Halbgewachs et al. (2009) treated fathead minnows with cortisol, a well known immunosuppressant, which significantly reduced alarm cell investment in conjunction with leukocyte activity. The results of these extensive studies strongly suggest that schreckstoff’s main function is to provide immunity against a number of environmental threats aimed at the fishes’ epidermis.
If schreckstoff evolved as a defense against pathogens, parasites and UVB radiation, then the release of schreckstoff into the environment subsequently allowed for both predators and prey to exploit this system. Predators in some systems may use schreckstoff as a cue for an easy meal, either by disrupting the predation event in order to steal the prey item for themselves or by depredating the initial predator. Nearby conspecifics then exploit schreckstoff as a chemical cue, alerting them to the presence of a predator in the area.
Ecological Considerations
The most convincing research to date indicates that alarm substance cells serve as an immune system response and that the ecological ramifications of this substance as a chemical alarm signal developed subsequently. This finding generates a number of interesting research questions. First, as mentioned earlier, males in many ostariophysan species cease production of alarm substance cells during the breeding season, presumably so that females are not inadvertently repelled from the nest when males incur mechanical damage during nest building. In light of the immune hypothesis, it is possible that alarm substance cells are instead produced less during the breeding season because increased testosterone levels may decrease immune responses (Folstad and Karter 1992). Additionally, this finding indicates that males are at a greater risk from UVB radiation as well as parasite and pathogen infection during the breeding season.The role of schreckstoff as an immune response has additional implications in this age of increasing environmental change (Chivers et al. 2007). Environmental stressors, including UVB radiation, pollution and parasites, are increasing in the environment and are likely to continue increasing over time. UVB radiation exposure is increasing due to decreases in stratospheric ozone (Blaustein et al. 1997), diseases are becoming increasingly important at both local and global scales (Kiesecker et al. 2004) and pollutants, including heavy metals
Heavy metals
A heavy metal is a member of a loosely-defined subset of elements that exhibit metallic properties. It mainly includes the transition metals, some metalloids, lanthanides, and actinides. Many different definitions have been proposed—some based on density, some on atomic number or atomic weight,...
, are being introduced into ecosystems (Jenson & Bro-Rasmussen 1992). If cadmium, the heavy metal affecting the fishes’ ability to produce schreckstoff in response to environmental stressors, increased in concentration in the environment, the immune response of many Ostariophysan fishes would be compromised (Chivers et al. 2007).