USS Spuyten Duyvil (1864)
Encyclopedia
During the American Civil War
American Civil War
The American Civil War was a civil war fought in the United States of America. In response to the election of Abraham Lincoln as President of the United States, 11 southern slave states declared their secession from the United States and formed the Confederate States of America ; the other 25...
, the Union Navy
Union Navy
The Union Navy is the label applied to the United States Navy during the American Civil War, to contrast it from its direct opponent, the Confederate States Navy...
suffered heavy losses from the explosion of Confederate torpedoes
Naval mine
A naval mine is a self-contained explosive device placed in water to destroy surface ships or submarines. Unlike depth charges, mines are deposited and left to wait until they are triggered by the approach of, or contact with, an enemy vessel...
. This experience prompted the Union Navy to design and build vessels capable of using this new weapon. One effort along this line resulted in a screw steam torpedo boat
Torpedo boat
A torpedo boat is a relatively small and fast naval vessel designed to carry torpedoes into battle. The first designs rammed enemy ships with explosive spar torpedoes, and later designs launched self-propelled Whitehead torpedoes. They were created to counter battleships and other large, slow and...
originally called Stromboli, but later called Spuyten Duyvil, after the Spuyten Duyvil area in New York City
New York City
New York is the most populous city in the United States and the center of the New York Metropolitan Area, one of the most populous metropolitan areas in the world. New York exerts a significant impact upon global commerce, finance, media, art, fashion, research, technology, education, and...
.
History
Stromboli was designed by the Chief Engineer of the United States Navy, Captain William W. Wood, who supervised her construction at New Haven, CTNew Haven, Connecticut
New Haven is the second-largest city in Connecticut and the sixth-largest in New England. According to the 2010 Census, New Haven's population increased by 5.0% between 2000 and 2010, a rate higher than that of the State of Connecticut, and higher than that of the state's five largest cities, and...
, by Samuel M. Pook
Samuel M. Pook
Samuel Moore Pook was a Boston-based American naval architect and father of Samuel Hartt Pook, the noted clipper ship naval architect. In 1861, at the outbreak of the American Civil War, he designed the City class ironclads for James B. Eads...
. The contract for her construction was dated 1 June 1864. Confirmed records of her launching and commissioning have not been found — though period records indicate that she was completed in only three months. On 19 November 1864, the boat was renamed Spuyten Duyvil. On 25 November 1864, she successfully fired two torpedoes. Late in November 1864, Commodore Charles Stewart Boggs was placed in charge of Spuyten Duyvil, Picket Boat No. 6, and steam tug John T. Jenkins which had been chartered to tow the former vessels to Hampton Roads, VA. Upon arriving at Baltimore, MD on 2 December, Boggs turned the vessels over to Commodore T. A. Dornin who placed them under First Assistant Engineer John L. Lay for the remainder of the trip to Hampton Roads. The vessels arrived at Norfolk, VA
Norfolk, Virginia
Norfolk is an independent city in the Commonwealth of Virginia in the United States. With a population of 242,803 as of the 2010 Census, it is Virginia's second-largest city behind neighboring Virginia Beach....
on 5 December.
The torpedo boat was ordered up the James River
James River (Virginia)
The James River is a river in the U.S. state of Virginia. It is long, extending to if one includes the Jackson River, the longer of its two source tributaries. The James River drains a catchment comprising . The watershed includes about 4% open water and an area with a population of 2.5 million...
a week later to help assure Union control of that vital waterway during General Ulysses S. Grant
Ulysses S. Grant
Ulysses S. Grant was the 18th President of the United States as well as military commander during the Civil War and post-war Reconstruction periods. Under Grant's command, the Union Army defeated the Confederate military and ended the Confederate States of America...
's drive on Richmond, VA. She arrived at Akin's Landing on 15 December, and she operated on the upper James slightly below the Confederate obstructions through most of the remaining months of the campaign. A highlight of her service came on the night of 23/24 January 1865 when the Confederacy's James River Squadron
James River Squadron
The James River Squadron was formed shortly after the secession of the State of Virginia as part of the Virginia State Navy. The squadron is most notable for its role in patrolling the James River, which was the main water approach to the Confederate capital, Richmond...
launched its downstream assault on the Union squadron. During the ensuing Battle of Trent's Reach
Battle of Trent's Reach
The Battle of Trent's Reach, or the Second Battle of Fort Brady, was one of the final major naval battles of the American Civil War. Beginning on January 23, 1865, a powerful flotilla of Confederate warships bombarded Fort Brady along the James River and engaged four Union Navy ships with the...
, Spuyten Duyvil supported , the only monitor then on the river.
After General Robert E. Lee
Robert E. Lee
Robert Edward Lee was a career military officer who is best known for having commanded the Confederate Army of Northern Virginia in the American Civil War....
evacuated Richmond, Spuyten Duyvil used her torpedoes to help clear the obstructions from the river. Her work made it possible for President Abraham Lincoln
Abraham Lincoln
Abraham Lincoln was the 16th President of the United States, serving from March 1861 until his assassination in April 1865. He successfully led his country through a great constitutional, military and moral crisis – the American Civil War – preserving the Union, while ending slavery, and...
to steam up stream in and, after Rear Admiral David Dixon Porter
David Dixon Porter
David Dixon Porter was a member of one of the most distinguished families in the history of the United States Navy. Promoted as the second man to the rank of admiral, after his adoptive brother David G...
's flagship
Flagship
A flagship is a vessel used by the commanding officer of a group of naval ships, reflecting the custom of its commander, characteristically a flag officer, flying a distinguishing flag...
ran aground, to be rowed in a launch safely to the former Confederate capital.
Following the end of the war, Spuyten Duyvil continued to clear obstructions from the James. She then returned to the New York Navy Yard where she was placed in ordinary in 1866. In the years that followed, she was used for developmental work and was modified with many experimental improvements. The ship disappeared from the Navy list in 1880.
Use of the term "torpedo "
In this case, as in the common use of the term in the 19th century, torpedo refers to a device sometimes rigged as a spar torpedoSpar torpedo
A spar torpedo is a weapon consisting of a bomb placed at the end of a long pole, or spar, and attached to a boat. The weapon is used by running the end of the spar into the enemy ship. Spar torpedoes were often equipped with a barbed spear at the end, so it would stick to wooden hulls...
that would now be considered to be a type of naval mine
Naval mine
A naval mine is a self-contained explosive device placed in water to destroy surface ships or submarines. Unlike depth charges, mines are deposited and left to wait until they are triggered by the approach of, or contact with, an enemy vessel...
, not being the self-propelled device
Torpedo
The modern torpedo is a self-propelled missile weapon with an explosive warhead, launched above or below the water surface, propelled underwater towards a target, and designed to detonate either on contact with it or in proximity to it.The term torpedo was originally employed for...
(called a locomotive torpedo) common in the 20th century.
Engineering
The following segments are an in-depth analysis of the vessel and the torpedo mechanisms, heavily based on an article written by the British publication Engineering in 1866. The torpedo apparatus is also described in US patent 46853, Improved Apparatus for Operating Submarine Shells or Torpedoes, issued to William Wood and John L. Lay Mar 14, 1865.The plans for the Spuyten Duyvil as referenced by the article.
Materials and layout
She was constructed of timber, and the deck, as well as the sides near the water line is protected by iron plating 1 in (25 mm) thick. Shown in elevation in Fig. 1, and section in Fig. 2, the pilothouse was place just a little ahead of the middle of the vessel with a 5 ft (1.5 m) outside diameter, and being constructed, for a height of 2 ft 8 in (810 mm) above the deck, of twelve layers of iron plates, each 1 in (25 mm) in thickness. The total weight of the pilothouse was 25,000 lb (11,000 kg).Propulsion and pumping
The vessel is propelled by a single four-bladed screw, and the engines for working the propeller were constructed at Mystic, CT, by Mallory and Co. When at her usual draft the vessel will steam 9 miles per hour (14 km/h); but when immersed to the gunwale, ready for going into action, her speed is reduced to from 3½ to 4 miles per hour (6 km/h); her movements are stated to be quite noiseless. She is provided with stowage for 160 tons of coal, equal to eight days' consumption. The pumps used for filling and emptying the compartments, by which the degree of immersion of the vessel is regulated, are a pair of Andrews's centrifugal pumps of the size known as "No. 6." These pumps are situated a short distance ahead of the pilothouse, as shown in Figs. 2 and 3 and they are each driven by a small oscillating engine, the crankshaft of each engine being coupled direct to the shaft of the pump to which it belongs. One of these pumps — that on the port side — has its suction pipes so arranged that, in addition to drawing from the water compartments or the sea, it can draw from the reservoir or tank in the fore part of the vessel, in which the torpedoes are placed.Torpedo placement machinery
The torpedo-laying machinery was designed by Captain Wood, and constructed by the Clute Brothers, of Schenectady, NY. The general appearance of the vessel is shown by the side elevation and plan, Figs. 1 and 4, while in Figs. 2 and 3 are given, respectively, a longitudinal section and sectional plan, which show clearly the arrangement of the torpedo machinery. The length of the vessel over all is 84 ft 2 in (25.7 m), and her length from the after edge of her stern post to the forward edge of the gate frame is 73 ft 11 in (22.5 m), while her breadth was 20 ft 8 in (6.3 m). The depth of her hold is 9 ft 11½ in (3.04 m), and her draft when launched with 10 tons of torpedo machinery and 2½ tons of her propelling engines on board was 4 ft. When fully equipped, this draft was increased to 7 ft 5½ in (2.27 m), and, by pumping water into compartments provided for the purpose, as will be explained presently, this draft can be increased to 9 ft 1 in (2.8 m) when the vessel is going into action. At this latter draft the water is about level with the gunwale, but, owing to the arched form of the deck, the vessel has still under such circumstances 207 tons of displacementDisplacement (fluid)
In fluid mechanics, displacement occurs when an object is immersed in a fluid, pushing it out of the way and taking its place. The volume of the fluid displaced can then be measured, as in the illustration, and from this the volume of the immersed object can be deduced .An object that sinks...
.
Torpedo ports
The lower part of the bow of the vessel, instead of being made solid as usual, is composed of two iron flaps, each hinged at the top, as shown in Figs. 1 and 2. When closed, the outer surfaces of these flaps correspond to the general shape of the bow, and, when the torpedo machinery is not being worked, they are kept down in their places by means of chains attached to them near their lower edges, and passing in through a pair of hawsepipes situated between the flaps. Each chain, after entering its hawsepipe, is attached to an iron rod, these rods passing into the vessel through stuffing-boxes at the inner ends of the hawsepipes. From the inner ends of these rods chains are led, over guide pulleys, to the ends of a winch, situated as shown in Figs. 2 and 3, and by means of this winch, which is worked by hand, the flaps can be closed when required. The opening of the flaps is effected by the arrangements shown in Figs. 1 and 4, from which it will be seen that each flap has a chain attached to the outside of it, and that these chains, after being led up over guide pulleys supported by brackets placed a the level of the gunwale, are crossed and then led down through hawse-holes in the deck to the winch below. The chains for opening, in fact, form continuations of those for closing the flaps, or vice versa.Sluice valve
At the bow of the vessel, within the space enclosed by the two flaps already described, there is an opening fitted with a sluice valve, as shown in Fig. 2. This valve slides vertically, and is raised and lowered by means of a screw, which can be worked by hand. The arrangement of gearing employed is shown in Fig. 3. When the sluice valve is opened, it admits the water into a strongly constructed iron reservoir 6 ft 2 in (1.9 m) long, 4 ft (1.2 m) deep, and varying from 2 ft 3 in to 3 ft (690 to 910 mm) wide. At the top of this tank there is a manhole fitted with a cover, hinged and fastened so that it can be easily removed and replaced; and from the lower part of the tank, a suction pipe proceeds to one of the Andrews's pumps. The aft end of the tank is fitted with a gunmetalGunmetal
Gunmetal, also known as yellow brass in the United States, is a type of bronze – an alloy of copper, tin, and zinc. Originally used chiefly for making guns, gunmetal was eventually superseded by steel...
sphere 18 in (460 mm) in diameter, this sphere being held by two flanges as shown in Fig. 2, so that it forms a ball-and-socket joint. It is through an opening in this sphere that the torpedo tube projected torpedoes from the vessel. This tube is about 20 ft (6.1 m) long, and has an external diameter of 5 in (127 mm) and an internal diameter of 3 in (76 mm). It was made by Morris, Tasker and Co., Philadelphia, PA and was considered a very superior example of workmanship.