Visual Servoing
Encyclopedia
Visual servoing, also known as Vision-Based Robot Control and abbreviated VS, is a technique which uses feedback information extracted from a vision sensor to control the motion of a robot. One of the earliest papers that talks about visual servoing was from the SRI International Labs. A first tutorial on Visual Servoing was published in 1996 by S. A. Hutchinson, G. D. Hager, and P. I. Corke, more recents tutorials were published in 2006 and 2007 by F. Chaumette and S. Hutchinson .
IBVS was proposed by Weiss and Sanderson. The control law is based on the error between current and desired features on the image plane, and does not involve any estimate of the pose of the target. The features may be the coordinates of visual features, lines or moments of regions. IBVS has difficulties with motions very large rotations, which has come to be called camera retreat.
PBVS is sometimes referred to as Pose-Based VS and is a model-based technique (with a single camera). This is because the pose of the object of interest is estimated with respect to the camera and then a command is issued to the robot controller, which in turn controls the robot. In this case the image features are extracted as well, but are additionally used to estimated 3D information (pose of the object in Cartesian space), hence it is servoing in 3D.
Hybrid approaches use some combination of the 2D and 3D servoing. There have been a few different approaches to hybrid servoing
Visual Servoing Methodology
Visual Servoing techniques are broadly classified into the following types- Image Based (IBVS)
- Position Based (PBVS)
- Hybrid Approach
IBVS was proposed by Weiss and Sanderson. The control law is based on the error between current and desired features on the image plane, and does not involve any estimate of the pose of the target. The features may be the coordinates of visual features, lines or moments of regions. IBVS has difficulties with motions very large rotations, which has come to be called camera retreat.
PBVS is sometimes referred to as Pose-Based VS and is a model-based technique (with a single camera). This is because the pose of the object of interest is estimated with respect to the camera and then a command is issued to the robot controller, which in turn controls the robot. In this case the image features are extracted as well, but are additionally used to estimated 3D information (pose of the object in Cartesian space), hence it is servoing in 3D.
Hybrid approaches use some combination of the 2D and 3D servoing. There have been a few different approaches to hybrid servoing
- 2-1/2-D Servoing
- Motion Partition Based
- Partitioned DOF Based
Softwares
- Matlab toolbox for visual servoing.
- Java-based visual servoing simulator.
- ViSP (ViSP states for "Visual Servoing Platform") is a modular software that allows fast development of visual servoing applications.
Tutorials
- S. A. Hutchinson, G. D. Hager, and P. I. Corke. A tutorial on visual servo control. IEEE Trans. Robot. Automat., 12(5):651—670, Oct. 1996.
- F. Chaumette, S. Hutchinson. Visual Servo Control, Part I: Basic Approaches. IEEE Robotics and Automation Magazine, 13(4):82-90, December 2006.
- F. Chaumette, S. Hutchinson. Visual Servo Control, Part II: Advanced Approaches. IEEE Robotics and Automation Magazine, 14(1):109-118, March 2007.
- Notes from IROS 2004 tutorial on advanced visual servoing.
- Springer Handbook of Robotics Chapter 24: Visual Servoing and Visual Tracking (François Chaumette, Seth Hutchinson)
External links
- UW-Madison, Robotics and Intelligent Systems Lab
- INRIA Lagadic research group
- Johns Hopkins University, LIMBS Laboratory
- University of Siena, SIRSLab Vision & Robotics Group
- Tohoku University, Intelligent Control Systems Laboratory
- INRIA Arobas research group
- LASMEA, Rosace group
- UIUC, Beckman Institute