Volume hologram
Encyclopedia
Volume holograms are holograms where the thickness of the recording material is much larger than the light wavelength used for recording. In this case diffraction of light from the hologram is possible only as Bragg diffraction, i.e., the light has to have the right wavelength (color) and the wave must have the right shape (beam direction, wavefront profile). Volume holograms are also called "thick holograms" or "Bragg holograms".
.
showing the extraordinary wavelength selectivity of such volume holograms.
In the case of a simple grating in the transmission geometry the angular selectivity can be estimated as well: , where is the thickness of the holographic grating. Here is given by 2). Using again typical numbers () one ends up with
showing the impressive angular selectivity of volume holograms.
Theory
Volume holograms were first treated by H. Kogelnik in 1969 by the so-called "coupled-wave theory". For volume phase holograms it is possible to diffract 100% of the incoming reference light into the signal wave, i.e., full diffraction of light can be achieved. Volume absorption holograms show much lower efficiencies. H. Kogelnik provides analytical solutions for transmission as well as for reflection conditions. A good text-book description of the theory of volume holograms can be found in a book from J. Goodman.
Bragg selectivity
In the case of a simple Bragg reflector the wavelength selectivity can be roughly estimated by , where is the vacuum wavelength of the reading light, is the period length of the grating and is the thickness of the grating. The assumption is just that the grating is not too strong, i.e., that the full length of the grating is used for light diffraction. Considering that because of the Bragg condition the simple relation holds, where is the refractive index of the material at this wavelength, one sees that for typical values () one getsshowing the extraordinary wavelength selectivity of such volume holograms.
In the case of a simple grating in the transmission geometry the angular selectivity can be estimated as well: , where is the thickness of the holographic grating. Here is given by 2). Using again typical numbers () one ends up with
showing the impressive angular selectivity of volume holograms.
Applications of volume holograms
The Bragg selectivity makes volume holograms very important. Prominent examples are:- Distributed feedback laserDistributed feedback laserA distributed feedback laser is a type of laser diode, quantum cascade laser or optical fibre laser where the active region of the device is periodically structured as a diffraction grating...
s (DFB lasers) as well as distributed Bragg reflector lasers (DBR lasers) where the wavelength selectivity of volume holograms is used to narrow the spectral emission of semiconductor lasers. - Holographic memory devices for holographic data storageHolographic data storageHolographic data storage is a potential technology in the area of high-capacity data storage currently dominated by magnetic and conventional optical data storage. Magnetic and optical data storage devices rely on individual bits being stored as distinct magnetic or optical changes on the surface...
where the Bragg selectivity is used to multiplex several holograms in one piece of holographic recording material using effectively the third dimension of the storage material. - Fiber Bragg gratingFiber Bragg gratingA fiber Bragg grating is a type of distributed Bragg reflector constructed in a short segment of optical fiber that reflects particular wavelengths of light and transmits all others. This is achieved by adding a periodic variation to the refractive index of the fiber core, which generates a...
s that employ volume holographic gratings encrypted into an optical fiber.
Wavelength filters that are used as an external feedback in particular for semiconductor lasers . Although the idea is similar to that of DBR lasers, these filters are not integrated onto the chip. With the help of such filters also high-power laser diodes become narrow-band and less temperature sensitive.