Washington Large Area Time Coincidence Array
Encyclopedia
The Washington Area Large-scale Time-coincidence Array (WALTA) is a cosmic ray
physics experiment run by the University of Washington
to investigate ultra high energy cosmic rays (>10^19 eV). The program uses detectors placed at Seattle-area high schools and colleges which are linked via the internet, effectively forming an Extensive Air Shower array. In addition to working on the unexplained levels of Ultra High Energy cosmic ray (UHECR) flux, it hopes to serve as a pedagogical tool for increasing the physics involvement of high schools and community colleges with a University level physics experiment. Each site has three to four scintillation detectors with the goal of having enough sites to cover a 200 km2 area around the city of Seattle. WALTA is a part of the larger NALTA project which hopes to combine data from several WALTA like projects to further the exploration of UHE cosmic rays.
due to pion production and pair production. In pion production, the protons (UHECRs) above 10^20 eV have enough energy to interact with the CMBR to create pions, and above 10^17 eV have enough energy to interact with the electron-positron pairs from pair production. These interactions would cause extra-galactic UHECRs to lose too much energy to reach the earth. Physicists have observed cosmic rays with energies at this level since 1963 Some cosmic ray experiments claim that they have seen UHECR levels in excess of the GZK prediction, while others claim to detect levels about equivalent to the prediction Such conflicting experiments are the motivation for further study of UHECRs and therefore experiments like WALTA.
Cosmic ray
Cosmic rays are energetic charged subatomic particles, originating from outer space. They may produce secondary particles that penetrate the Earth's atmosphere and surface. The term ray is historical as cosmic rays were thought to be electromagnetic radiation...
physics experiment run by the University of Washington
University of Washington
University of Washington is a public research university, founded in 1861 in Seattle, Washington, United States. The UW is the largest university in the Northwest and the oldest public university on the West Coast. The university has three campuses, with its largest campus in the University...
to investigate ultra high energy cosmic rays (>10^19 eV). The program uses detectors placed at Seattle-area high schools and colleges which are linked via the internet, effectively forming an Extensive Air Shower array. In addition to working on the unexplained levels of Ultra High Energy cosmic ray (UHECR) flux, it hopes to serve as a pedagogical tool for increasing the physics involvement of high schools and community colleges with a University level physics experiment. Each site has three to four scintillation detectors with the goal of having enough sites to cover a 200 km2 area around the city of Seattle. WALTA is a part of the larger NALTA project which hopes to combine data from several WALTA like projects to further the exploration of UHE cosmic rays.
Cosmic Rays
Cosmic rays are high energy particles that bombard the Earth's atmosphere. About 89% of these are protons. The flux of cosmic rays is approximately proportional to 1/(Ea) where E is the energy and a is somewhere between 2 and 3 up to the UHECR limit. Cosmic rays created in our galaxy with energy of less than about 10^18eV get trapped by the galaxy's magnetic field. Particles above that should escape, so high energy cosmic rays would likely come from outside our galaxy. According to the Greisen, Zatsepin, Kuzmin (GZK) cutoff, inter-galactic cosmic rays above 10^20eV should be absorbed by the Cosmic microwave background radiationCosmic microwave background radiation
In cosmology, cosmic microwave background radiation is thermal radiation filling the observable universe almost uniformly....
due to pion production and pair production. In pion production, the protons (UHECRs) above 10^20 eV have enough energy to interact with the CMBR to create pions, and above 10^17 eV have enough energy to interact with the electron-positron pairs from pair production. These interactions would cause extra-galactic UHECRs to lose too much energy to reach the earth. Physicists have observed cosmic rays with energies at this level since 1963 Some cosmic ray experiments claim that they have seen UHECR levels in excess of the GZK prediction, while others claim to detect levels about equivalent to the prediction Such conflicting experiments are the motivation for further study of UHECRs and therefore experiments like WALTA.