X-ray pulsar
Encyclopedia
X-ray pulsars or accretion-powered pulsars are a class of astronomical
Astronomy
Astronomy is a natural science that deals with the study of celestial objects and phenomena that originate outside the atmosphere of Earth...

 objects that are X-ray
X-ray
X-radiation is a form of electromagnetic radiation. X-rays have a wavelength in the range of 0.01 to 10 nanometers, corresponding to frequencies in the range 30 petahertz to 30 exahertz and energies in the range 120 eV to 120 keV. They are shorter in wavelength than UV rays and longer than gamma...

 sources displaying strict periodic variations in X-ray intensity. The X-ray periods range from as little as a fraction of a second to as much as several minutes.

How it works

An X-ray pulsar consists of a magnetized neutron star
Neutron star
A neutron star is a type of stellar remnant that can result from the gravitational collapse of a massive star during a Type II, Type Ib or Type Ic supernova event. Such stars are composed almost entirely of neutrons, which are subatomic particles without electrical charge and with a slightly larger...

 in orbit with a normal stellar companion and are a type of binary star system. The magnetic field
Magnetic field
A magnetic field is a mathematical description of the magnetic influence of electric currents and magnetic materials. The magnetic field at any given point is specified by both a direction and a magnitude ; as such it is a vector field.Technically, a magnetic field is a pseudo vector;...

 strength at the surface of the neutron star is typically about 108 Tesla
Tesla (unit)
The tesla is the SI derived unit of magnetic field B . One tesla is equal to one weber per square meter, and it was defined in 1960 in honour of the inventor, physicist, and electrical engineer Nikola Tesla...

, over a trillion times stronger than the strength of the magnetic field measured at the surface of the Earth
Earth's magnetic field
Earth's magnetic field is the magnetic field that extends from the Earth's inner core to where it meets the solar wind, a stream of energetic particles emanating from the Sun...

 (60 nT
Tesla (unit)
The tesla is the SI derived unit of magnetic field B . One tesla is equal to one weber per square meter, and it was defined in 1960 in honour of the inventor, physicist, and electrical engineer Nikola Tesla...

).

Gas is accreted from the stellar companion and is channeled by the neutron star's magnetic field on to the magnetic poles producing two or more localized X-ray hot spots similar to the two auroral zones
Aurora (astronomy)
An aurora is a natural light display in the sky particularly in the high latitude regions, caused by the collision of energetic charged particles with atoms in the high altitude atmosphere...

 on the Earth but far hotter. At these hotspots the infalling gas can reach half the speed of light
Speed of light
The speed of light in vacuum, usually denoted by c, is a physical constant important in many areas of physics. Its value is 299,792,458 metres per second, a figure that is exact since the length of the metre is defined from this constant and the international standard for time...

 before it impacts the neutron star surface. So much gravitational potential energy
Potential energy
In physics, potential energy is the energy stored in a body or in a system due to its position in a force field or due to its configuration. The SI unit of measure for energy and work is the Joule...

 is released by the infalling gas, that the hotspots, which are estimated to about one square kilometer in area, can be up to ten thousand times or more luminous than the Sun
Sun
The Sun is the star at the center of the Solar System. It is almost perfectly spherical and consists of hot plasma interwoven with magnetic fields...

.

Temperatures of millions of degrees are produced so the hotspots emit mostly X-rays. As the neutron star rotates, pulses of X-rays are observed as the hotspots move in and out of view if the magnetic axis is tilted with respect to the spin axis.

Gas supply

The gas that supplies the X-ray pulsar can reach the neutron star by a variety of ways that depend on the size and shape of the neutron star's orbital path and the nature of the companion star.

Some companion stars of X-ray pulsars are very massive young stars, usually OB supergiants (see stellar classification
Stellar classification
In astronomy, stellar classification is a classification of stars based on their spectral characteristics. The spectral class of a star is a designated class of a star describing the ionization of its chromosphere, what atomic excitations are most prominent in the light, giving an objective measure...

), that emit a radiation driven stellar wind
Stellar wind
A stellar wind is a flow of neutral or charged gas ejected from the upper atmosphere of a star. It is distinguished from the bipolar outflows characteristic of young stars by being less collimated, although stellar winds are not generally spherically symmetric.Different types of stars have...

 from their surface. The neutron star is immersed in the wind and continuously captures gas that flows nearby. Vela X-1
Vela X-1
Vela X-1 is a pulsing, eclipsing high-mass X-ray binary system, associated with the Uhuru source 4U 0900-40 and the supergiant star HD 77581....

 is an example of this kind of system.

In other systems, the neutron star orbits so closely to its companion that its strong gravitational force can pull material from the companion's atmosphere into an orbit around itself, a mass transfer process known as Roche lobe
Roche lobe
The Roche lobe is the region of space around a star in a binary system within which orbiting material is gravitationally bound to that star. If the star expands past its Roche lobe, then the material can escape the gravitational pull of the star. If the star is in a binary system then the material...

 overflow. The captured material forms a gaseous accretion disc
Accretion disc
An accretion disc is a structure formed by diffuse material in orbital motion around a central body. The central body is typically a star. Gravity causes material in the disc to spiral inward towards the central body. Gravitational forces compress the material causing the emission of...

 and spirals inwards to ultimately fall onto the neutron star as in the binary system Cen X-3.

For still other types of X-ray pulsars, the companion star is a Be star
Be star
A Be star is a B-type star with prominent emission lines of hydrogen in its spectrum. The designation is combined by the spectral class, B, and the lowercase e denoting emission in the spectral classification system. Line emission from other atomic ions might be present as well, but is typically...

 that rotates very rapidly and apparently sheds a disk of gas around its equator. The orbits of the neutron star with these companions are usually large and very elliptical in shape. When the neutron star passes nearby or through the Be circumstellar disk, it will capture material and temporarily become an X-ray pulsar. The circumstellar disk around the Be star expands and contracts for unknown reasons, so these are transient X-ray pulsars that are observed only intermittently, often with months to years between episodes of observable X-ray pulsation.

Spin behaviors

Radio pulsars (rotation-powered pulsars) and X-ray pulsars exhibit very different spin behaviors and have different mechanisms producing their characteristic pulses although it is accepted that both kinds of pulsar are manifestations of a rotating magnetized
Magnetism
Magnetism is a property of materials that respond at an atomic or subatomic level to an applied magnetic field. Ferromagnetism is the strongest and most familiar type of magnetism. It is responsible for the behavior of permanent magnets, which produce their own persistent magnetic fields, as well...

 neutron star
Neutron star
A neutron star is a type of stellar remnant that can result from the gravitational collapse of a massive star during a Type II, Type Ib or Type Ic supernova event. Such stars are composed almost entirely of neutrons, which are subatomic particles without electrical charge and with a slightly larger...

. The rotation cycle of the neutron star in both cases is identified with the pulse period.

The major differences are that radio pulsars have periods on the order of milliseconds to seconds, and all radio pulsars are losing angular momentum and slowing down. In contrast, the X-ray pulsars exhibit a variety of spin behaviors. Some X-ray pulsars are observed to be continuously spinning faster or slower (with occasional reversals in these trends) while others show either little change in pulse period or display erratic spin-down and spin-up behavior.

The explanation of this difference can be found in the physical nature of the two pulsar classes. Over 99% of radio pulsars are single objects that radiate away their rotational energy in the form of relativistic particle
Relativistic particle
A relativistic particle is a particle which moves with a relativistic speed; that is, a speed comparable to the speed of light. This is achieved by photons to the extent that effects described by special relativity are able to describe those of such particles themselves...

s and magnetic dipole
Magnetic dipole
A magnetic dipole is the limit of either a closed loop of electric current or a pair of poles as the dimensions of the source are reduced to zero while keeping the magnetic moment constant. It is a magnetic analogue of the electric dipole, but the analogy is not complete. In particular, a magnetic...

 radiation, lighting up any nearby nebulae that surround them. In contrast, X-ray pulsars are members of binary star systems and accrete matter from either stellar winds or accretion disks. The accreted matter transfers angular momentum
Angular momentum
In physics, angular momentum, moment of momentum, or rotational momentum is a conserved vector quantity that can be used to describe the overall state of a physical system...

 to (or from) the neutron star causing the spin rate to increase or decrease at rates that are often hundreds of times faster than the typical spin down rate in radio pulsars. Exactly why the X-ray pulsars show such varied spin behavior is still not clearly understood.

Observations

X-ray pulsars are observed using X-ray telescopes that are satellites in low Earth orbit although some observations have been made, mostly in the early years of X-ray astronomy
X-ray astronomy
X-ray astronomy is an observational branch of astronomy which deals with the study of X-ray observation and detection from astronomical objects. X-radiation is absorbed by the Earth's atmosphere, so instruments to detect X-rays must be taken to high altitude by balloons, sounding rockets, and...

, using detectors carried by balloons or sounding rockets.

Discovered in 1968, the Crab pulsar
Crab Pulsar
The Crab Pulsar is a relatively young neutron star. The star is the central star in the Crab Nebula, a remnant of the supernova SN 1054, which was widely observed on Earth in the year 1054...

 was the first to be connected with a supernova remnant.
The first X-ray pulsar to be discovered from its X-Ray emission alone was Centaurus X-3
Centaurus X-3
Centaurus X-3 is an X-ray pulsar with a period of 4.84 seconds. It was the first X-ray pulsar to be discovered, and the third X-ray source to be discovered in the constellation Centaurus.-History:...

, in 1971 with the Uhuru
Uhuru (satellite)
Uhuru was the first satellite launched specifically for the purpose of X-ray astronomy. It was also known as the X-ray Explorer Satellite, SAS-A , SAS 1, or Explorer 42.The observatory was launched on 12 December 1970 into an initial orbit of about 560 km apogee, 520 km...

 X-ray satellite.

See also

  • Neutron star
    Neutron star
    A neutron star is a type of stellar remnant that can result from the gravitational collapse of a massive star during a Type II, Type Ib or Type Ic supernova event. Such stars are composed almost entirely of neutrons, which are subatomic particles without electrical charge and with a slightly larger...

  • Pulsar
    Pulsar
    A pulsar is a highly magnetized, rotating neutron star that emits a beam of electromagnetic radiation. The radiation can only be observed when the beam of emission is pointing towards the Earth. This is called the lighthouse effect and gives rise to the pulsed nature that gives pulsars their name...

  • Radio pulsar
  • Anomalous X-ray pulsar
    Anomalous X-ray pulsar
    Anomalous X-ray Pulsars are now widely believed to be magnetars—young, isolated, highly magnetized neutron stars. These energetic X-ray pulsars are characterized by slow rotation periods of ~2–12 seconds and large magnetic fields of ~1013–1015 gauss . There are currently 9 known and 1 candidate...

  • Magnetar
    Magnetar
    A magnetar is a type of neutron star with an extremely powerful magnetic field, the decay of which powers the emission of copious high-energy electromagnetic radiation, particularly X-rays and gamma rays...

  • Millisecond pulsar
    Millisecond pulsar
    A millisecond pulsar is a pulsar with a rotational period in the range of about 1-10 milliseconds. Millisecond pulsars have been detected in the radio, X-ray, and gamma ray portions of the electromagnetic spectrum. The origin of millisecond pulsars is still unknown...

  • Pulsar planets
  • List of X-ray pulsars

External links

The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK