Zero waste
Encyclopedia
Zero waste is a philosophy that encourages the redesign of resource
life cycles so that all products are reused. Any trash sent to landfills and incinerators is minimal. The process recommended is one similar to the way that resources are reused in nature. A working definition of zero waste, often cited by experts in the field originated from a working group of the Zero Waste International Alliance in 2004. The definition is as follows: "Zero Waste is a goal that is ethical, economical, efficient and visionary, to guide people in changing their lifestyles and practices to emulate sustainable natural cycles, where all discarded materials are designed to become resources for others to use. Zero Waste means designing and managing products and processes to systematically avoid and eliminate the volume and toxicity of waste and materials, conserve and recover all resources, and not burn or bury them.
Implementing Zero Waste will eliminate all discharges to land, water or air that are a threat to planetary, human, animal or plant health."
In industry this process involves creating commodities out of traditional waste products, essentially making old outputs new inputs for similar or different industrial sectors. An example might be the cycle of a glass
milk bottle
. The primary input (or resource) is silica-sand
, which is formed into glass and then into a bottle. The bottle is filled with milk
and distributed to the consumer. At this point, normal waste methods would see the bottle disposed in a landfill or similar. But with a zero-waste method, the bottle can be saddled at the time of sale with a deposit, which is returned to the bearer upon redemption. The bottle is then washed, refilled, and resold. The only material waste is the wash water, and energy loss has been minimized (see container deposit legislation
).
Zero waste can represent an economical alternative to waste systems, where new resources are continually required to replenish wasted raw materials. It can also represent an environmental alternative to waste since waste represents a significant amount of pollution in the world.
The term zero waste was first used publicly in the name of a company
, Zero Waste Systems Inc (ZWS), which was founded by PhD
chemist Paul Palmer in the mid 1970s in Oakland, California
. The mission of ZWS was to find new homes for most of the chemicals being excessed by the nascent electronics
industry. They soon expanded their services in many other directions. For example, they accepted free of charge, large quantities of new and usable laboratory
chemicals which they resold to experimenters, scientists, companies and tinkerers of every description during the 1970s. ZWS arguably had the largest inventory of laboratory chemicals in all of California
, which were sold for half price. They also collected all of the solvent produced by the electronics industry called developer/rinse (a mixture of xylene
and butyl acetate
). This was put into small cans and sold as a lacquer
thinner
. ZWS collected all the "reflow oil" created by the printed circuit industry, which was filtered and resold into the "downhole" (oil well) industry. ZWS pioneered many other projects.
Because they were the only ones in the world in this business, they achieved an international reputation. Many magazine articles were written about them and several television shows featured them. The California Integrated Waste Management Board produced a slide show featuring ZWS's business and the EPA published a number of studies of their business, calling them an "active waste exchange".
The heir to the ZWS mantle is the Zero Waste Institute (ZWI), also founded by Paul Palmer, which can be found on http://www.zerowasteinstitute.org. Building on the lessons learned from ZWS, the ZWI considers recycling to be no more than an appendage to garbage creation and the garbage industry. ZWI likewise rejects all attempts to reuse garbage or any kind of waste product. Instead, ZWI calls for the redesign of all of the products of industry and commerce, and the processes that produce, sell and make use of them, so that discard never takes place and there is no waste generated needing to be reused or recycled. Discard is seen as the critical step, a commercial and psychological transfer of responsibility which breaks the chain of custody of a product, removes its owner and subjects it to the degradation of garbage management.
The website offers numerous specific examples of ways in which products can be designed so that discard is unnecessary since the lifetime of the product is extended to at least a threshold value of approximately a human lifetime of 100 years. A fully worked out set of principles and analysis is presented, revolving, among other changes, around standardization, modularization and robust design. A theory of Design Efficiency leading to Design Effectiveness is presented, which means that once a product is designed to be used in perpetuity, it can be fitted out with robust features, strong materials and special conveniences that could not be afforded in a product designed to be discarded after a single use. That theory is applied to packages as an example.
The ZWI rejects all association with the world of recycling, pointing out that there is no theory of recycling in existence; only a trusting hope that it can be useful.
The movement gained publicity and reached a peak in 1998+2002, and since then has been moving from "theory into action" by focusing on how a "zero waste community" is structured and behaves. The website of the Zero Waste International Alliance has a listing of communities across the globe that have created public policy to promote zero-waste practices. See also the Eco-Cycle website for examples of how this large nonprofit is leading Boulder County, Colorado on a Zero-Waste path and watch a 6-minute video about the zero-waste big picture. Finally, there is a USA zero-waste organization named the GrassRoots Recycling Network that puts on workshops and conferences about zero-waste activities.
The tension between zero waste, viewed as post-discard total recycling of materials only, and zero waste as the reuse of all high level function remains a serious one today. It is probably the defining difference between established recyclers and emerging zero-wasters. A signature example is the difference between smashing a glass bottle (recovering cheap glass) and refilling the bottle (recovering the entire function of the container).
The tension between the literal application of natural processes and the creation of industry-specific more efficient reuse modalities is another tension. Many observers look to nature as an ultimate model for production and innovative materials. Others point out that industrial products are inherently non-natural (such as chemicals and plastics that are mono-molecular) and benefit greatly from industrial methods of reuse, while natural methods requiring degradation and reconstitution are wasteful in that context.
Biodegradable plastic
is the most prominent example. One side argues that biodegradation
of plastic is wasteful because plastic is expensive and environmentally damaging to make. Whether made of starch or petroleum, the manufacturing process expends all the same materials and energy costs. Factories are built, raw materials are procured, investments are made, machinery is built and used, humans labor and make use of all normal human inputs for education, housing, food etc. Even if the plastic is biodegraded after a single use, all of those costs are lost so it is much more important to design plastic parts for multiple reuse or perpetual lives. The other side argues that keeping plastic out of a dump or the sea is the sole benefit of interest.
Companies moving towards "zero landfill" plants include Subaru
, Xerox
and Anheuser-Busch
.
It is important to distinguish recycling from Zero Waste.
Some claim that the key component to zero waste is recycling
while others reject that notion in favor of reusing high function. The common understanding of recycling is simply that of placing bottles and cans in a recycle bin. The modern version of recycling is more complicated and involves many more elements of financing and government support. For example, a 2007 report by the U.S. Environmental Protection Agency states that the US recycles at a national rate of 33.4% and includes in this figure composted materials. In addition many worldwide commodity industries have been created to handle the materials that are recycled. At the same time, claims of recycling rates have sometimes been exaggerated, for example by the inclusion of soil and organic matter used to cover garbage dumps daily, in the "recycled" column. In states with recycling incentives, there is constant local pressure to pump up the recycling rate figures.
The movement toward recycling has separated itself from the concept of zero waste. One example of this is the computer industry where worldwide millions of PC's are disposed of each year (160 million in 2007). Those computers that enter the recycling stream are broken down into a small amount of raw materials while most merely enter dumps through export to third world countries. Companies are then able to purchase some raw materials, notably steel, copper and glass, reducing the use of new materials. On the other hand, there is an industry, more aligned with the Zero Waste principle of design for long term reuse, that actually repairs computers. It is called the Computer Refurbishing industry and it predates the current campaign to just collect and ship electronics. They have organizations and conferences and have for many years donated computers to schools, clinics and non-profits. Zero Waste planning demands that components be redesigned for effective reuse over long lives leading to even more refurbishing and repair.
There is one seminal example that brings out the difference between Zero Waste and recycling in stark relief. That example, quoted in Getting To Zero Waste, is the software business. Zero Waste is sensitive to the waste of intellectual effort that would be caused by the need to recreate certain basic inventions of software (called objects in software design) as opposed to copying them over and over whenever needed. The waste would occur as the software developers consume resources while solving problems already solved earlier. The application of Zero Waste analysis is straightforward as it recommends conserving human effort. On the other hand, the usual approach of recycling would be to look for some materials that could be found to reuse. The materials on which software is saved (such as paper or diskettes)is of little significance compared to the saving of human effort and if software is saved electronically, there is no media at all. Thus Zero Waste correctly identifies a wasteful behavior to avoid while recycling has no application.
The recycling movement has been embraced by the garbage industry because it serves so well as greenwashing i.e. a way to show that design for garbage creation is acceptable because materials will be kept out of a dump by recycling them. Zero Waste, on the other hand, offers the garbage industry no such screen against public condemnation of waste, and therefore actually threatens the continued need for garbage disposal. For example, in Alameda County, California
, garbage dumping is charged a surcharge of $8/ton (as of 2009) which goes entirely for a recycling subsidy but none of which goes for any kind of Zero Waste style designing. Zero Waste has received no support from the garbage industry or politicians under their control except in those cases where it can be claimed to consist solely of more recycling.
Zero waste is poorly supported by the enactment of government laws to enforce the waste hierarchy of reduce, reuse, and recycle
. In practice, these laws invariably emphasize destruction and recycling, while the reuse component is marginalized.
A special feature of Zero Waste as a design principle is that it can be applied to any product or process, in any situation or at any level. Thus it applies equally to toxic chemicals as to benign plant matter. It applies to the waste of atmospheric purity by coal burning or the waste of radioactive resources by attempting to designate the excesses of nuclear power plants as "nuclear waste". All processes can be designed to minimize the need for discard, both in their own operations and in the usage or consumption patterns which the design of their products leads to. Recycling, on the other hand, deals only with simple materials.
Zero Waste can even be applied to the waste of human potential by enforced poverty and the denial of educational opportunity. It encompasses redesign for reduced energy wasting in industry or transportation and the wasting of the earth's rainforests. It is a general principle of designing for the efficient use of all resources, however defined.
The recycling movement may be slowly branching out from its solid waste management base to include issues that are similar to the community sustainability movement.
Zero waste on the other hand, is not based in waste management limitations to begin with but requires that we maximize our existing reuse efforts while creating and applying new methods that minimize and eliminate destructive methods like incineration and recycling. Zero Waste strives to ensure that products are designed to be repaired, refurbished, remanufactured and generally reused.. (“What is Zero Waste?”, para 2).
Many dumps are currently exceeding carrying capacity. This is often, mistakenly used as a justification for moving to Zero Waste. Others counter by pointing out that there are huge tracts of land available throughout the USA and other countries which could be used for dumps. This is no more of an argument against the need for Zero Waste than is the former an argument for Zero Waste. The underlying need to move to a society designed along Zero Waste principles arises from the huge waste of resources that is inherent in poorly made, short-lived articles and production processes. The locus of the most egregious wasting takes place as articles are built and processes are run wastefully. The actual placing of a now useless item in a dump is barely the icing on the cake, in terms of the waste it represents. Poorly conceived proposals, that appear with a dismaying regularity on the Internet, to blithely destroy all garbage as a way to solve the garbage problem, make use of the common delusion that it is the garbage itself which is the problem. These proposals typically claim to convert all or a large portion of existing garbage into oil and sometimes claim to produce so much oil that the world will henceforth have abundant liquid fuels. One such plan, called Anything Into Oil was promoted by Discover Magazine and Fortune Magazine in 2004, even though it absurdly claimed to be able to convert a refrigerator into "light Texas crude" by the application of high pressure steam. Zero Waste analysis, which is long on scientific results and short on spectacular claims, receives no such promotion by the media.
An example of a company that has demonstrated a change in landfill waste policy is General Motors
(GM). GM has confirmed their plans to make approximately half of its 181 plants worldwide "landfill-free" by the end of 2010. Companies like Subaru
, Toyota, and Xerox
are also producing landfill-free plants. GM is supposed to have about eighty producing plants twenty months. Furthermore, The United States Environmental Protection Agency
(EPA) has worked with GM and other companies for decades to minimize the waste through its WasteWise program. The goal for General Motors is finding ways to recycle or reuse more than 90% of materials by: selling scrap materials, adopting reusable parts boxes to replace cardboard, and even recycling used work gloves. The remainder of the scraps might be incinerated to create energy for the plants. Besides being nature friendly, it also saves money by cutting out waste and producing a more efficient production. All these organizations push forth to make our world clean and producing zero waste.
It may also be reused and recycled for something that we can actually use. "The success of General Motors in creating zero-landfill facilities shows that zero-waste goals can be a powerful impetus for manufacturers to reduce their waste and carbon footprint," says Latisha Petteway, a spokesperson for the EPA.
Zero Waste is a goal, a process, a way of thinking that profoundly changes our approach to resources and production. Zero Waste is not about recycling and diversion from landfills but about restructuring production and distribution systems to prevent waste from being manufactured in the first place. The materials that are still required in these re-designed, resource-efficient systems will be reused many times as the products that incorporate them are reused. Deconstruction can be described as construction in reverse. It involves carefully taking apart a building to maximize the reuse of materials, thereby reducing waste and conserving resources. Deconstruction can capture materials and some components from the millions of buildings that are existing and that were poorly designed for high level reuse but it is not a favored approach from a Zero Waste point of view. Zero Waste favors the design of buildings as assemblages of high level components, not their creation from rough materials such as lumber, cement or plaster. The details are not worked out yet but to the extent that entire rooms, entire walls, roofs or floors or entire utility systems can be pre-built and installed as completed components, that will be the goal of Zero Waste design. Until buildings are built as components capable of later dismantling, deconstruction is a stop-gap process that the United States can use to minimize the waste of building materials. For now, the largest parts that we are able to save tend to be architectural elements, windows, doors, and metals, many of which are being saved and resold by reuse yards such as Urban Ore in Berkeley California. The main parts that still need to be crushed are wood flooring, brick walls, and structural timbers. The demolition of traditional buildings has been long done by wrecking ball or bulldozer. Social and political artifacts, such as demolition contractor licenses and required permits that can only be satisfied by destruction and discard (with partial recycling of rubble and steel), render the destruction and disposal costs cheaper than deconstruction. Approximately seventy pounds of the waste is generated for about every square foot of the residential building demolition. It is arguable that this is artificial economics, based on the cultural preference for wastefulness and that Zero Waste designs of dismantlable components will ultimately be the cheapest as well as the most conservative way to reuse buildings. Further discussions of this topic may be found on the ZWI website.
Market-based, legislation-mediated campaigns like Extended Producer Responsibility (EPR) and the Precautionary Principle are among numerous campaigns that have a Zero Waste slogan hung on them by means of claims they will ineluctably lead to policies of Zero Waste. At the moment, there is no evidence that EPR will increase reuse, rather than merely moving discard and disposal into private-sector dumping contracts. The Precautionary Principle is put forward to shift liability for proving new chemicals are safe from the public (acting as guinea pig) to the company introducing them. As such, its relation to Zero Waste is dubious. Likewise, many organizations, cities and counties have embraced a Zero Waste slogan while pressing for none of the key Zero Waste changes. In fact, it is common for many such to simply state that recycling is their entire goal. Many commercial or industrial companies claim to embrace Zero Waste but usually mean no more than a major materials recycling effort, having no bearing on product redesign. Examples include Staples, Home Depot, Toyota, General Motors and computer take-back campaigns. Earlier social justice campaigns have successfully pressured McDonald’s to change their meat purchasing practices and Nike to change its labor practices in Southeast Asia. Those were both based on the idea that organized consumers can be active participants in the economy and not just passive subjects. However, the announced and enforced goal of the public campaign is critical. A goal to reduce waste generation or dumping through greater recycling will not achieve a goal of product redesign and so cannot reasonably be called a Zero Waste campaign.
An example of network governance approach can be seen in the UK under New Labour who proposed the establishment of regional groupings that brought together the key stakeholders in waste management (local authority representatives, waste industry, government offices etc.) on a voluntary basis. There is a lack of clear government policy on how to meet the targets for diversion from landfill which increases the scope at the regional and local level for governance networks. The overall goal is set by government but the route for how to achieve it is left open. Governance in waste management seeks to widen the range of stakeholders involved and improve co-ordination between them. This mobilizes a collective action which is essential to overcome potential conflicts when tackling a goal as visionary as Zero Waste.
The challenge of governance in waste management therefore is how to get collective action across the broad spectrum of stakeholders. Zero Waste is a strategy promoted by environmental NGOs but the waste industry is more in favour of the capital intensive option of energy from waste incineration. Research often highlights public support as the first requirement for success. In Taiwan, public opinion was essential in changing the attitude of business, who must transform their material use pattern to become more sustainable for Zero Waste to work,. The public were made aware of the importance of sustainability through communication with governmental and nongovernmental organisations illustrating the importance of networks. The latest development in Zero Waste is the city of Masdar in Abu Dhabi which promises to be a Zero Waste city. Innovation and technology is encouraged by government creating an innovation friendly environment without being prescriptive. To be a successful model of sustainable urban development it will also require the involvement and co-operation from all members of society emphasizing the importance of network governance.
Regional organisations
News
Natural resource
Natural resources occur naturally within environments that exist relatively undisturbed by mankind, in a natural form. A natural resource is often characterized by amounts of biodiversity and geodiversity existent in various ecosystems....
life cycles so that all products are reused. Any trash sent to landfills and incinerators is minimal. The process recommended is one similar to the way that resources are reused in nature. A working definition of zero waste, often cited by experts in the field originated from a working group of the Zero Waste International Alliance in 2004. The definition is as follows: "Zero Waste is a goal that is ethical, economical, efficient and visionary, to guide people in changing their lifestyles and practices to emulate sustainable natural cycles, where all discarded materials are designed to become resources for others to use. Zero Waste means designing and managing products and processes to systematically avoid and eliminate the volume and toxicity of waste and materials, conserve and recover all resources, and not burn or bury them.
Implementing Zero Waste will eliminate all discharges to land, water or air that are a threat to planetary, human, animal or plant health."
In industry this process involves creating commodities out of traditional waste products, essentially making old outputs new inputs for similar or different industrial sectors. An example might be the cycle of a glass
Glass
Glass is an amorphous solid material. Glasses are typically brittle and optically transparent.The most familiar type of glass, used for centuries in windows and drinking vessels, is soda-lime glass, composed of about 75% silica plus Na2O, CaO, and several minor additives...
milk bottle
Milk bottle
Milk bottles are bottles used for milk. They may be reusable glass bottles used mainly for doorstep delivery of fresh milk by milkmen. Customers are expected to rinse the empty bottles and leave on the doorstep for collection...
. The primary input (or resource) is silica-sand
Sand
Sand is a naturally occurring granular material composed of finely divided rock and mineral particles.The composition of sand is highly variable, depending on the local rock sources and conditions, but the most common constituent of sand in inland continental settings and non-tropical coastal...
, which is formed into glass and then into a bottle. The bottle is filled with milk
Milk
Milk is a white liquid produced by the mammary glands of mammals. It is the primary source of nutrition for young mammals before they are able to digest other types of food. Early-lactation milk contains colostrum, which carries the mother's antibodies to the baby and can reduce the risk of many...
and distributed to the consumer. At this point, normal waste methods would see the bottle disposed in a landfill or similar. But with a zero-waste method, the bottle can be saddled at the time of sale with a deposit, which is returned to the bearer upon redemption. The bottle is then washed, refilled, and resold. The only material waste is the wash water, and energy loss has been minimized (see container deposit legislation
Container deposit legislation
Container-deposit legislation is any law that requires collection of a monetary deposit on soft-drink, juice, milk, water, alcoholic-beverage, and/or other containers at the point of sale...
).
Zero waste can represent an economical alternative to waste systems, where new resources are continually required to replenish wasted raw materials. It can also represent an environmental alternative to waste since waste represents a significant amount of pollution in the world.
1970s: Zero Waste Systems Inc
The term zero waste was first used publicly in the name of a company
Company
A company is a form of business organization. It is an association or collection of individual real persons and/or other companies, who each provide some form of capital. This group has a common purpose or focus and an aim of gaining profits. This collection, group or association of persons can be...
, Zero Waste Systems Inc (ZWS), which was founded by PhD
PHD
PHD may refer to:*Ph.D., a doctorate of philosophy*Ph.D. , a 1980s British group*PHD finger, a protein sequence*PHD Mountain Software, an outdoor clothing and equipment company*PhD Docbook renderer, an XML renderer...
chemist Paul Palmer in the mid 1970s in Oakland, California
Oakland, California
Oakland is a major West Coast port city on San Francisco Bay in the U.S. state of California. It is the eighth-largest city in the state with a 2010 population of 390,724...
. The mission of ZWS was to find new homes for most of the chemicals being excessed by the nascent electronics
Electronics
Electronics is the branch of science, engineering and technology that deals with electrical circuits involving active electrical components such as vacuum tubes, transistors, diodes and integrated circuits, and associated passive interconnection technologies...
industry. They soon expanded their services in many other directions. For example, they accepted free of charge, large quantities of new and usable laboratory
Laboratory
A laboratory is a facility that provides controlled conditions in which scientific research, experiments, and measurement may be performed. The title of laboratory is also used for certain other facilities where the processes or equipment used are similar to those in scientific laboratories...
chemicals which they resold to experimenters, scientists, companies and tinkerers of every description during the 1970s. ZWS arguably had the largest inventory of laboratory chemicals in all of California
California
California is a state located on the West Coast of the United States. It is by far the most populous U.S. state, and the third-largest by land area...
, which were sold for half price. They also collected all of the solvent produced by the electronics industry called developer/rinse (a mixture of xylene
Xylene
Xylene encompasses three isomers of dimethylbenzene. The isomers are distinguished by the designations ortho- , meta- , and para- , which specify to which carbon atoms the two methyl groups are attached...
and butyl acetate
Butyl acetate
n-Butyl acetate, also known as butyl ethanoate, is an organic compound commonly used as a solvent in the production of lacquers and other products. It is also used as a synthetic fruit flavoring in foods such as candy, ice cream, cheeses, and baked goods. Butyl acetate is found in many types of...
). This was put into small cans and sold as a lacquer
Lacquer
In a general sense, lacquer is a somewhat imprecise term for a clear or coloured varnish that dries by solvent evaporation and often a curing process as well that produces a hard, durable finish, in any sheen level from ultra matte to high gloss and that can be further polished as required...
thinner
Paint thinner
A paint thinner is a solvent used to thin oil-based paints or clean up after their use, although all such solvents have other uses. Commercially, "paint thinner" is usually a name for mineral spirits.Products used as paint thinners include:*Mineral spirits...
. ZWS collected all the "reflow oil" created by the printed circuit industry, which was filtered and resold into the "downhole" (oil well) industry. ZWS pioneered many other projects.
Because they were the only ones in the world in this business, they achieved an international reputation. Many magazine articles were written about them and several television shows featured them. The California Integrated Waste Management Board produced a slide show featuring ZWS's business and the EPA published a number of studies of their business, calling them an "active waste exchange".
The heir to the ZWS mantle is the Zero Waste Institute (ZWI), also founded by Paul Palmer, which can be found on http://www.zerowasteinstitute.org. Building on the lessons learned from ZWS, the ZWI considers recycling to be no more than an appendage to garbage creation and the garbage industry. ZWI likewise rejects all attempts to reuse garbage or any kind of waste product. Instead, ZWI calls for the redesign of all of the products of industry and commerce, and the processes that produce, sell and make use of them, so that discard never takes place and there is no waste generated needing to be reused or recycled. Discard is seen as the critical step, a commercial and psychological transfer of responsibility which breaks the chain of custody of a product, removes its owner and subjects it to the degradation of garbage management.
The website offers numerous specific examples of ways in which products can be designed so that discard is unnecessary since the lifetime of the product is extended to at least a threshold value of approximately a human lifetime of 100 years. A fully worked out set of principles and analysis is presented, revolving, among other changes, around standardization, modularization and robust design. A theory of Design Efficiency leading to Design Effectiveness is presented, which means that once a product is designed to be used in perpetuity, it can be fitted out with robust features, strong materials and special conveniences that could not be afforded in a product designed to be discarded after a single use. That theory is applied to packages as an example.
The ZWI rejects all association with the world of recycling, pointing out that there is no theory of recycling in existence; only a trusting hope that it can be useful.
1998-2003: peak
The movement gained publicity and reached a peak in 1998+2002, and since then has been moving from "theory into action" by focusing on how a "zero waste community" is structured and behaves. The website of the Zero Waste International Alliance has a listing of communities across the globe that have created public policy to promote zero-waste practices. See also the Eco-Cycle website for examples of how this large nonprofit is leading Boulder County, Colorado on a Zero-Waste path and watch a 6-minute video about the zero-waste big picture. Finally, there is a USA zero-waste organization named the GrassRoots Recycling Network that puts on workshops and conferences about zero-waste activities.
Present day
The tension between zero waste, viewed as post-discard total recycling of materials only, and zero waste as the reuse of all high level function remains a serious one today. It is probably the defining difference between established recyclers and emerging zero-wasters. A signature example is the difference between smashing a glass bottle (recovering cheap glass) and refilling the bottle (recovering the entire function of the container).
The tension between the literal application of natural processes and the creation of industry-specific more efficient reuse modalities is another tension. Many observers look to nature as an ultimate model for production and innovative materials. Others point out that industrial products are inherently non-natural (such as chemicals and plastics that are mono-molecular) and benefit greatly from industrial methods of reuse, while natural methods requiring degradation and reconstitution are wasteful in that context.
Biodegradable plastic
Biodegradable plastic
Biodegradable plastics are plastics that will decompose in natural aerobic and anaerobic environments. Biodegradation of plastics can be achieved by enabling microorganisms in the environment to metabolize the molecular structure of plastic films to produce an inert humus-like material that is...
is the most prominent example. One side argues that biodegradation
Biodegradation
Biodegradation or biotic degradation or biotic decomposition is the chemical dissolution of materials by bacteria or other biological means...
of plastic is wasteful because plastic is expensive and environmentally damaging to make. Whether made of starch or petroleum, the manufacturing process expends all the same materials and energy costs. Factories are built, raw materials are procured, investments are made, machinery is built and used, humans labor and make use of all normal human inputs for education, housing, food etc. Even if the plastic is biodegraded after a single use, all of those costs are lost so it is much more important to design plastic parts for multiple reuse or perpetual lives. The other side argues that keeping plastic out of a dump or the sea is the sole benefit of interest.
Companies moving towards "zero landfill" plants include Subaru
Subaru
; is the automobile manufacturing division of Japanese transportation conglomerate Fuji Heavy Industries .Subaru is internationally known for their use of the boxer engine layout popularized in cars by the Volkswagen Beetle and Porsche 911, in most of their vehicles above 1500 cc as well as...
, Xerox
Xerox
Xerox Corporation is an American multinational document management corporation that produced and sells a range of color and black-and-white printers, multifunction systems, photo copiers, digital production printing presses, and related consulting services and supplies...
and Anheuser-Busch
Anheuser-Busch
Anheuser-Busch Companies, Inc. , is an American brewing company. The company operates 12 breweries in the United States and 18 in other countries. It was, until December 2009, also one of America's largest theme park operators; operating ten theme parks across the United States through the...
.
Recycling
It is important to distinguish recycling from Zero Waste.
Some claim that the key component to zero waste is recycling
Recycling
Recycling is processing used materials into new products to prevent waste of potentially useful materials, reduce the consumption of fresh raw materials, reduce energy usage, reduce air pollution and water pollution by reducing the need for "conventional" waste disposal, and lower greenhouse...
while others reject that notion in favor of reusing high function. The common understanding of recycling is simply that of placing bottles and cans in a recycle bin. The modern version of recycling is more complicated and involves many more elements of financing and government support. For example, a 2007 report by the U.S. Environmental Protection Agency states that the US recycles at a national rate of 33.4% and includes in this figure composted materials. In addition many worldwide commodity industries have been created to handle the materials that are recycled. At the same time, claims of recycling rates have sometimes been exaggerated, for example by the inclusion of soil and organic matter used to cover garbage dumps daily, in the "recycled" column. In states with recycling incentives, there is constant local pressure to pump up the recycling rate figures.
The movement toward recycling has separated itself from the concept of zero waste. One example of this is the computer industry where worldwide millions of PC's are disposed of each year (160 million in 2007). Those computers that enter the recycling stream are broken down into a small amount of raw materials while most merely enter dumps through export to third world countries. Companies are then able to purchase some raw materials, notably steel, copper and glass, reducing the use of new materials. On the other hand, there is an industry, more aligned with the Zero Waste principle of design for long term reuse, that actually repairs computers. It is called the Computer Refurbishing industry and it predates the current campaign to just collect and ship electronics. They have organizations and conferences and have for many years donated computers to schools, clinics and non-profits. Zero Waste planning demands that components be redesigned for effective reuse over long lives leading to even more refurbishing and repair.
There is one seminal example that brings out the difference between Zero Waste and recycling in stark relief. That example, quoted in Getting To Zero Waste, is the software business. Zero Waste is sensitive to the waste of intellectual effort that would be caused by the need to recreate certain basic inventions of software (called objects in software design) as opposed to copying them over and over whenever needed. The waste would occur as the software developers consume resources while solving problems already solved earlier. The application of Zero Waste analysis is straightforward as it recommends conserving human effort. On the other hand, the usual approach of recycling would be to look for some materials that could be found to reuse. The materials on which software is saved (such as paper or diskettes)is of little significance compared to the saving of human effort and if software is saved electronically, there is no media at all. Thus Zero Waste correctly identifies a wasteful behavior to avoid while recycling has no application.
The recycling movement has been embraced by the garbage industry because it serves so well as greenwashing i.e. a way to show that design for garbage creation is acceptable because materials will be kept out of a dump by recycling them. Zero Waste, on the other hand, offers the garbage industry no such screen against public condemnation of waste, and therefore actually threatens the continued need for garbage disposal. For example, in Alameda County, California
Alameda County, California
Alameda County is a county in the U.S. state of California. It occupies most of the East Bay region of the San Francisco Bay Area. As of the 2010 census it had a population of 1,510,271, making it the 7th most populous county in the state...
, garbage dumping is charged a surcharge of $8/ton (as of 2009) which goes entirely for a recycling subsidy but none of which goes for any kind of Zero Waste style designing. Zero Waste has received no support from the garbage industry or politicians under their control except in those cases where it can be claimed to consist solely of more recycling.
Reduce and reuse
Zero waste is poorly supported by the enactment of government laws to enforce the waste hierarchy of reduce, reuse, and recycle
Waste hierarchy
The waste hierarchy refers to the 3 Rs of reduce, reuse, recycle, or and [ which classify waste management strategies according to their desirability. The Rs are meant to be a hierarchy, in order of importance...
. In practice, these laws invariably emphasize destruction and recycling, while the reuse component is marginalized.
A special feature of Zero Waste as a design principle is that it can be applied to any product or process, in any situation or at any level. Thus it applies equally to toxic chemicals as to benign plant matter. It applies to the waste of atmospheric purity by coal burning or the waste of radioactive resources by attempting to designate the excesses of nuclear power plants as "nuclear waste". All processes can be designed to minimize the need for discard, both in their own operations and in the usage or consumption patterns which the design of their products leads to. Recycling, on the other hand, deals only with simple materials.
Zero Waste can even be applied to the waste of human potential by enforced poverty and the denial of educational opportunity. It encompasses redesign for reduced energy wasting in industry or transportation and the wasting of the earth's rainforests. It is a general principle of designing for the efficient use of all resources, however defined.
The recycling movement may be slowly branching out from its solid waste management base to include issues that are similar to the community sustainability movement.
Zero waste on the other hand, is not based in waste management limitations to begin with but requires that we maximize our existing reuse efforts while creating and applying new methods that minimize and eliminate destructive methods like incineration and recycling. Zero Waste strives to ensure that products are designed to be repaired, refurbished, remanufactured and generally reused.. (“What is Zero Waste?”, para 2).
The Significance of Dump Capacity
Many dumps are currently exceeding carrying capacity. This is often, mistakenly used as a justification for moving to Zero Waste. Others counter by pointing out that there are huge tracts of land available throughout the USA and other countries which could be used for dumps. This is no more of an argument against the need for Zero Waste than is the former an argument for Zero Waste. The underlying need to move to a society designed along Zero Waste principles arises from the huge waste of resources that is inherent in poorly made, short-lived articles and production processes. The locus of the most egregious wasting takes place as articles are built and processes are run wastefully. The actual placing of a now useless item in a dump is barely the icing on the cake, in terms of the waste it represents. Poorly conceived proposals, that appear with a dismaying regularity on the Internet, to blithely destroy all garbage as a way to solve the garbage problem, make use of the common delusion that it is the garbage itself which is the problem. These proposals typically claim to convert all or a large portion of existing garbage into oil and sometimes claim to produce so much oil that the world will henceforth have abundant liquid fuels. One such plan, called Anything Into Oil was promoted by Discover Magazine and Fortune Magazine in 2004, even though it absurdly claimed to be able to convert a refrigerator into "light Texas crude" by the application of high pressure steam. Zero Waste analysis, which is long on scientific results and short on spectacular claims, receives no such promotion by the media.
Corporate Initiatives
An example of a company that has demonstrated a change in landfill waste policy is General Motors
General Motors
General Motors Company , commonly known as GM, formerly incorporated as General Motors Corporation, is an American multinational automotive corporation headquartered in Detroit, Michigan and the world's second-largest automaker in 2010...
(GM). GM has confirmed their plans to make approximately half of its 181 plants worldwide "landfill-free" by the end of 2010. Companies like Subaru
Subaru
; is the automobile manufacturing division of Japanese transportation conglomerate Fuji Heavy Industries .Subaru is internationally known for their use of the boxer engine layout popularized in cars by the Volkswagen Beetle and Porsche 911, in most of their vehicles above 1500 cc as well as...
, Toyota, and Xerox
Xerox
Xerox Corporation is an American multinational document management corporation that produced and sells a range of color and black-and-white printers, multifunction systems, photo copiers, digital production printing presses, and related consulting services and supplies...
are also producing landfill-free plants. GM is supposed to have about eighty producing plants twenty months. Furthermore, The United States Environmental Protection Agency
United States Environmental Protection Agency
The U.S. Environmental Protection Agency is an agency of the federal government of the United States charged with protecting human health and the environment, by writing and enforcing regulations based on laws passed by Congress...
(EPA) has worked with GM and other companies for decades to minimize the waste through its WasteWise program. The goal for General Motors is finding ways to recycle or reuse more than 90% of materials by: selling scrap materials, adopting reusable parts boxes to replace cardboard, and even recycling used work gloves. The remainder of the scraps might be incinerated to create energy for the plants. Besides being nature friendly, it also saves money by cutting out waste and producing a more efficient production. All these organizations push forth to make our world clean and producing zero waste.
Re-Use of Waste
The waste sent to landfills may be harvested as useful materials, such as in the production of solar energy or fertiliser for crops.It may also be reused and recycled for something that we can actually use. "The success of General Motors in creating zero-landfill facilities shows that zero-waste goals can be a powerful impetus for manufacturers to reduce their waste and carbon footprint," says Latisha Petteway, a spokesperson for the EPA.
Construction and deconstruction
Zero Waste is a goal, a process, a way of thinking that profoundly changes our approach to resources and production. Zero Waste is not about recycling and diversion from landfills but about restructuring production and distribution systems to prevent waste from being manufactured in the first place. The materials that are still required in these re-designed, resource-efficient systems will be reused many times as the products that incorporate them are reused. Deconstruction can be described as construction in reverse. It involves carefully taking apart a building to maximize the reuse of materials, thereby reducing waste and conserving resources. Deconstruction can capture materials and some components from the millions of buildings that are existing and that were poorly designed for high level reuse but it is not a favored approach from a Zero Waste point of view. Zero Waste favors the design of buildings as assemblages of high level components, not their creation from rough materials such as lumber, cement or plaster. The details are not worked out yet but to the extent that entire rooms, entire walls, roofs or floors or entire utility systems can be pre-built and installed as completed components, that will be the goal of Zero Waste design. Until buildings are built as components capable of later dismantling, deconstruction is a stop-gap process that the United States can use to minimize the waste of building materials. For now, the largest parts that we are able to save tend to be architectural elements, windows, doors, and metals, many of which are being saved and resold by reuse yards such as Urban Ore in Berkeley California. The main parts that still need to be crushed are wood flooring, brick walls, and structural timbers. The demolition of traditional buildings has been long done by wrecking ball or bulldozer. Social and political artifacts, such as demolition contractor licenses and required permits that can only be satisfied by destruction and discard (with partial recycling of rubble and steel), render the destruction and disposal costs cheaper than deconstruction. Approximately seventy pounds of the waste is generated for about every square foot of the residential building demolition. It is arguable that this is artificial economics, based on the cultural preference for wastefulness and that Zero Waste designs of dismantlable components will ultimately be the cheapest as well as the most conservative way to reuse buildings. Further discussions of this topic may be found on the ZWI website.
Market-based campaigns
Market-based, legislation-mediated campaigns like Extended Producer Responsibility (EPR) and the Precautionary Principle are among numerous campaigns that have a Zero Waste slogan hung on them by means of claims they will ineluctably lead to policies of Zero Waste. At the moment, there is no evidence that EPR will increase reuse, rather than merely moving discard and disposal into private-sector dumping contracts. The Precautionary Principle is put forward to shift liability for proving new chemicals are safe from the public (acting as guinea pig) to the company introducing them. As such, its relation to Zero Waste is dubious. Likewise, many organizations, cities and counties have embraced a Zero Waste slogan while pressing for none of the key Zero Waste changes. In fact, it is common for many such to simply state that recycling is their entire goal. Many commercial or industrial companies claim to embrace Zero Waste but usually mean no more than a major materials recycling effort, having no bearing on product redesign. Examples include Staples, Home Depot, Toyota, General Motors and computer take-back campaigns. Earlier social justice campaigns have successfully pressured McDonald’s to change their meat purchasing practices and Nike to change its labor practices in Southeast Asia. Those were both based on the idea that organized consumers can be active participants in the economy and not just passive subjects. However, the announced and enforced goal of the public campaign is critical. A goal to reduce waste generation or dumping through greater recycling will not achieve a goal of product redesign and so cannot reasonably be called a Zero Waste campaign.
Governance
Re-shaping people’s resource use pattern is a challenge beyond the scope of piecemeal and reactive laws. Policy incrementalism reflects policymakers tendency to build on what already exists and is characterised by minimal disturbance of the current state. This cannot achieve the targets of Zero Waste at a national level. What is needed is a shift from government (formal organisations and procedures of the public sector) to governance (array of governmental and non-governmental institutions). The government alone does not have the cognitive breadth to determine how to reach the ultimate target of Zero Waste which requires the involvement of businesses, NGOs, the public and the state in governing. Governance is “ultimately concerned with creating the conditions for ordered rule and collective action” and to achieve Zero Waste, a departure from waste management based simply on waste disposal ideology is necessary. The role of the state is to act as central steering mechanism and governance networks that bring together government; public and market actors are viewed as important to achieve Zero Waste similar to many other environmental goals. The Johannesburg World Summit on Sustainable Development emphasized these partnerships between different stakeholders in the environment and the establishment of Public-Private partnerships is seen as the best way to achieve sustainability.An example of network governance approach can be seen in the UK under New Labour who proposed the establishment of regional groupings that brought together the key stakeholders in waste management (local authority representatives, waste industry, government offices etc.) on a voluntary basis. There is a lack of clear government policy on how to meet the targets for diversion from landfill which increases the scope at the regional and local level for governance networks. The overall goal is set by government but the route for how to achieve it is left open. Governance in waste management seeks to widen the range of stakeholders involved and improve co-ordination between them. This mobilizes a collective action which is essential to overcome potential conflicts when tackling a goal as visionary as Zero Waste.
The challenge of governance in waste management therefore is how to get collective action across the broad spectrum of stakeholders. Zero Waste is a strategy promoted by environmental NGOs but the waste industry is more in favour of the capital intensive option of energy from waste incineration. Research often highlights public support as the first requirement for success. In Taiwan, public opinion was essential in changing the attitude of business, who must transform their material use pattern to become more sustainable for Zero Waste to work,. The public were made aware of the importance of sustainability through communication with governmental and nongovernmental organisations illustrating the importance of networks. The latest development in Zero Waste is the city of Masdar in Abu Dhabi which promises to be a Zero Waste city. Innovation and technology is encouraged by government creating an innovation friendly environment without being prescriptive. To be a successful model of sustainable urban development it will also require the involvement and co-operation from all members of society emphasizing the importance of network governance.
See also
- WasteWasteWaste is unwanted or useless materials. In biology, waste is any of the many unwanted substances or toxins that are expelled from living organisms, metabolic waste; such as urea, sweat or feces. Litter is waste which has been disposed of improperly...
- RecyclingRecyclingRecycling is processing used materials into new products to prevent waste of potentially useful materials, reduce the consumption of fresh raw materials, reduce energy usage, reduce air pollution and water pollution by reducing the need for "conventional" waste disposal, and lower greenhouse...
- Source reductionSource reductionSource reduction refers to any change in the design, manufacture, purchase, or use of materials or products to reduce their amount or toxicity before they become municipal solid waste.- Synonyms :...
- Composting
- EnvironmentalismEnvironmentalismEnvironmentalism is a broad philosophy, ideology and social movement regarding concerns for environmental conservation and improvement of the health of the environment, particularly as the measure for this health seeks to incorporate the concerns of non-human elements...
- MiniwasteMiniwasteMiniwaste is a European project , co-funded by the LIFE+ programme of the European Commission. It is designed to “bring bio-waste back to life”...
External links
- Zero Waste Institute
- Zero Waste Network
- Zero Waste International Alliance (ZWIA)
- Zero Waste Alliance
Regional organisations
- Sustainable concepts towards a Zero Outflow Municipality (Zer0-M)
- Zero Waste Alliance UK
- Zero Waste Scotland
- Zero Waste Australia
- Zero Waste Europe
- Zero Waste California
- Zero Waste New Zealand
- Product Policy Institute
- The Product Stewardship Institute
- Container Recycling Insitute
- GrassRoots Recycling Institute
News