ATP synthase subunit C
Encyclopedia
ATPase, subunit C of F0/V0 complex is the main transmembrane subunit of V-type , A-type and F-type ATP synthase
ATP synthase
right|thumb|300px|Molecular model of ATP synthase by X-ray diffraction methodATP synthase is an important enzyme that provides energy for the cell to use through the synthesis of adenosine triphosphate . ATP is the most commonly used "energy currency" of cells from most organisms...

s.

ATPases (or ATP synthases) are membrane-bound enzyme complexes/ion transporters that combine ATP synthesis and/or hydrolysis with the transport of protons across a membrane. ATPases can harness the energy from a proton gradient, using the flux of ions across the membrane via the ATPase proton channel to drive the synthesis of ATP. Some ATPases work in reverse,
using the energy from the hydrolysis of ATP to create a proton gradient. There are different types of ATPases, which can
differ in function (ATP synthesis and/or hydrolysis), structure (F-, V- and A-ATPases contain rotary motors) and in the type of ions they transport.
  • F-ATPases (F1F0-ATPases) in mitochondria, chloroplasts and bacterial plasma membranes are the prime producers of ATP, using the proton gradient generated by oxidative phosphorylation (mitochondria) or photosynthesis (chloroplasts).
  • V-ATPase
    V-ATPase
    Vacuolar-type H+-ATPase is a highly conserved evolutionarily ancient enzyme with remarkably diverse functions in eukaryotic organisms. V-ATPases acidify a wide array of intracellular organelles and pump protons across the plasma membranes of numerous cell types...

     (V1V0-ATPases) are primarily found in eukaryotic vacuoles, catalysing ATP hydrolysis to transport solutes and lower pH in organelles.
  • A-ATPases (A1A0-ATPases) are found in Archaea and function like F-ATPases.
  • P-ATPases (E1E2-ATPases) are found in bacteria and in eukaryotic plasma membranes and organelles, and function to transport a variety of different ions across membranes.
  • E-ATPases are cell-surface enzymes that hydrolyse a range of NTPs, including extracellular ATP.


The F-ATPases (or F1F0-ATPases) and V-ATPases (or V1V0-ATPases) are each composed of two linked complexes: the F1 or V1 complex contains the catalytic core that synthesizes/hydrolyses ATP, and the F0 or V0 complex that forms the membrane-spanning pore. The F- and V-ATPases all contain rotary motors, one that drives proton translocation across the membrane and one that drives ATP synthesis/hydrolysis.

Subunit C (also called subunit 9, or proteolipid in F-ATPases, or the 16 kDa proteolipid in V-ATPases) was found in the F0 or V0 complex of F- and V-ATPases, respectively. In F-ATPases, ten C subunits form an oligomeric ring that makes up the F0 rotor. The flux of protons through the ATPase channel drives the rotation of the C subunit ring, which in turn is coupled to the rotation of the F1 complex gamma subunit rotor due to the permanent binding between the gamma and epsilon subunits of F1 and the C subunit ring of F0. The sequential protonation and deprotonation of Asp61 of subunit C is coupled to the stepwise movement of the rotor.

In V-ATPases, there are three proteolipid subunits (c, c and c) that form part of the proton-conducting pore, each containing a buried glutamic acid residue that is essential for proton transport, and together they form a hexameric ring spanning the membrane.

Subfamilies

  • ATPase, V0 complex, proteolipid subunit C,
  • ATPase, F0 complex, subunit C 

Human proteins containing this domain

ATP5G1
ATP5G1
ATP synthase lipid-binding protein, mitochondrial is an enzyme that in humans is encoded by the ATP5G1 gene.-Further reading:...

; ATP5G2
ATP5G2
ATP synthase lipid-binding protein, mitochondrial is an enzyme that in humans is encoded by the ATP5G2 gene.-Further reading:...

; ATP5G3
ATP5G3
ATP synthase lipid-binding protein, mitochondrial is an enzyme that in humans is encoded by the ATP5G3 gene.-Further reading:...

; ATP6V0B
ATP6V0B
V-type proton ATPase 21 kDa proteolipid subunit is an enzyme that in humans is encoded by the ATP6V0B gene.-Further reading:...

; ATP6V0C
ATP6V0C
V-type proton ATPase 16 kDa proteolipid subunit is an enzyme that in humans is encoded by the ATP6V0C gene.-Further reading:...

;
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK