Advanced superionic conductor
Encyclopedia
The term of advanced superionic conductors (AdSIC) was first introduced in the paper by A.L.Despotuli, A.V.Andreeva and B.Rambaby.

AdSICs are fast ion conductor
Fast ion conductor
In solid-state ionics, fast ion conductors, also known as solid electrolytes and superionic conductors, are materials that act as solid state ion conductors and are used primarily in solid oxide fuel cells. As solid electrolytes they conduct due to the movement of ions through voids, or empty...

s that have a crystal structure close to optimal for fast ion transport (FIT). The rigid ion sublattice of AdSIC has structure channels where mobile ions of opposite sign migrate. The ion-transport characteristics of AdSICs are very high, ionic conductivity, ~0.3/Ω cm (RbAg4I5
Rubidium silver iodide
Rubidium silver iodide is a ternary inorganic compound with the formula RbAg4I5. It is an unusual solid where the electrical conductivity involves movement of silver ions within the crystal lattice...

, 300 K) and activation energy Ei~0.1 eV. This determines the temperature-dependent concentration of mobile ions ni~Ni x eEi/kBT capable to migrate in conduction channels at each moment (Ni~1022/cm3, ni~2x1020/cm3, 300 K).

Rubidium silver iodide
Rubidium silver iodide
Rubidium silver iodide is a ternary inorganic compound with the formula RbAg4I5. It is an unusual solid where the electrical conductivity involves movement of silver ions within the crystal lattice...

 –family is a group of the AdSICs compounds and solid solutions which are isostructural with the RbAg4I5 alpha modification. The examples of such compounds with mobile Ag+- and Cu+-cations are: KAg4I5, NH4Ag4I5, K1-xCsxAg4I5, Rb1-xCsxAg4I5, CsAg4Br1-xI2+x, CsAg4ClBr2I2, CsAg4Cl3I2, RbCu4Cl3I2, KCu4I5 and others [3-8].

For the RbAg4I5 AdSIC the peculiar features of crystal structure and dynamics of mobile ions were studied in [9,10]

Recently, all solid state micrometre-sized supercapacitors based on AdSICs (nanoionic supercapacitors) had been recognized as critical electron component of future sub-voltage and deep-sub-voltage nanoelectronics
Deep-sub-voltage nanoelectronics
Deep-sub-voltage nanoelectronics are integrated circuits operating near theoretical limits of energy consumption per unit of processing. These devices are intended to address the needs of applications such as wireless sensor networks which have dramatically different requirements from traditional...

and related technologies (22 nm technological node of CMOS and beyond).
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK