Binocular disparity
Encyclopedia
Binocular disparity refers to the difference in image location of an object seen by the left and right eye
Human eye
The human eye is an organ which reacts to light for several purposes. As a conscious sense organ, the eye allows vision. Rod and cone cells in the retina allow conscious light perception and vision including color differentiation and the perception of depth...

s, resulting from the eyes' horizontal separation. The brain uses binocular disparity to extract depth information from the two-dimensional retinal images in stereopsis
Stereopsis
Stereopsis refers to impression of depth that is perceived when a scene is viewed with both eyes by someone with normal binocular vision. Binocular viewing of a scene creates two slightly different images of the scene in the two eyes due the the eyes' different positions on the head...

. In computer vision
Computer vision
Computer vision is a field that includes methods for acquiring, processing, analysing, and understanding images and, in general, high-dimensional data from the real world in order to produce numerical or symbolic information, e.g., in the forms of decisions...

, binocular disparity refers to the difference in coordinates of similar features within two stereo images.

A similar disparity can be used in rangefinding by a coincidence rangefinder
Coincidence rangefinder
A coincidence rangefinder is a type of rangefinder that uses mechanical and optical principles to allow an operator to determine the distance to a visible object....

 to determine distance and/or altitude to a target. In astronomy, the disparity between different locations on the Earth can be used to determine various celestial parallax
Parallax
Parallax is a displacement or difference in the apparent position of an object viewed along two different lines of sight, and is measured by the angle or semi-angle of inclination between those two lines. The term is derived from the Greek παράλλαξις , meaning "alteration"...

, and Earth's orbit can be used for stellar parallax
Stellar parallax
Stellar parallax is the effect of parallax on distant stars in astronomy. It is parallax on an interstellar scale, and it can be used to determine the distance of Earth to another star directly with accurate astrometry...

.

Definition

Human eyes are horizontally separated by about 50–75 mm (interpupillary distance
Interpupillary distance
Interpupillary distance is the distance between the center of the pupils of the two eyes. IPD is critical for the design of binocular viewing systems, where both eye pupils need to be positioned within the exit pupils of the viewing system. These viewing systems include binocular microscopes,...

) depending on each individual. Thus, each eye has a slightly different view of the world. This can be easily seen when alternately closing one eye while looking at a vertical edge. The binocular disparity can be observed from apparent horizontal shift of the vertical edge between both views.

At any given moment, the line of sight of the two eyes meet at a point in space. This point in space projects to the same location (i.e. the center) on the retinae of the two eyes. Because of the different viewpoints observed by the left and right eye however, many other points in space do not fall on corresponding retinal locations. Visual binocular disparity is defined as the difference between the point of projection in the two eyes and is usually expressed in degrees as the visual angle
Visual angle
The visual angle is the angle a viewed object subtends at the eye, usually stated in degrees of arc.It also is called the object's angular size....

.

Figure 1: The full black circle is the point of fixation. The blue object lies nearer to the observer. Therefore it has a "near" disparity dn. Objects lying more far away (green) correspondingly have a "far" disparity df. Binocular disparity is the angle between two lines of projection in one eye. One of which is the real projection from the object to the actual point of projection. The other one is the imaginary projection running through the focal point of the lens of the one eye to the point corresponding to the actual point of projection in the other eye. For simplicity reasons here both objects lie on the line of fixation for one eye such that the imaginary projection ends directly on the fovea of the other eye, but in general the fovea acts at most as a reference. Note that far disparities are smaller than near disparities for objects having the same distance from the fixation point.

In computer vision, binocular disparity is calculated from stereo images taken from a set of stereo cameras. The variable distance between these cameras, called the baseline, can affect the disparity of a specific point on their respective image plane. As the baseline increases, the disparity increases due to the greater angle needed to align the sight on the point. However, in computer vision, binocular disparity is referenced as coordinate differences of the point between the right and left images instead of a visual angle. The units are usually measured in pixels.

Tricking neurons with 2D images

Brain cells (neuron
Neuron
A neuron is an electrically excitable cell that processes and transmits information by electrical and chemical signaling. Chemical signaling occurs via synapses, specialized connections with other cells. Neurons connect to each other to form networks. Neurons are the core components of the nervous...

s) in a part of the brain responsible for processing visual information coming from the retinae (primary visual cortex) can detect the existence of disparity in their input from the eyes. Specifically, these neurons will be active, if an object with "their" special disparity lies within the part of the visual field to which they have access (receptive field
Receptive field
The receptive field of a sensory neuron is a region of space in which the presence of a stimulus will alter the firing of that neuron. Receptive fields have been identified for neurons of the auditory system, the somatosensory system, and the visual system....

).

Researchers investigating precise properties of these neurons with respect to disparity present visual stimuli
Stimulus (physiology)
In physiology, a stimulus is a detectable change in the internal or external environment. The ability of an organism or organ to respond to external stimuli is called sensitivity....

 with different disparities to the cells and look whether they are active or not. One possibility to present stimuli with different disparities is to place objects in varying depth in front of the eyes. However, the drawback to this method may not be precise enough for objects placed further away as they possess smaller disparities while objects closer will have greater disparities. Instead, neuroscientists use an alternate method as schematised in Figure 2.

Figure 2: The disparity of an object with different depth than the fixation point can alternatively be produced by presenting an image of the object to one eye and a laterally shifted version of the same image to the other eye. The full black circle is the point of fixation. Objects in varying depths are placed along the line of fixation of the left eye. The same disparity produced from a shift in depth of an object (filled coloured circles) can also be produced by laterally shifting the object in constant depth in the picture one eye sees (black circles with coloured margin). Note that for near disparities the lateral shift has to be larger to correspond to the same depth compared with far disparities. This is what neuroscientists usually do with random dot stimuli to study disparity selectivity of neurons since the lateral distance required to test disparities is less than the distances required using depth tests. This principle has also been applied in autostereogram
Autostereogram
An autostereogram is a single-image stereogram , designed to create the visual illusion of a three-dimensional scene from a two-dimensional image in the human brain...

 illusions.

Computing disparity using digital stereo images

The disparity of features between two stereo images are usually computed as a shift to the left of an image feature when viewed in the right image. For example, a single point that appears at the x coordinate t (measured in pixel
Pixel
In digital imaging, a pixel, or pel, is a single point in a raster image, or the smallest addressable screen element in a display device; it is the smallest unit of picture that can be represented or controlled....

s) in the left image may be present at the x coordinate t - 3 in the right image. In this case, the disparity at that location in the right image would be 3 pixels.

Stereo images may not always be correctly aligned to allow for quick disparity calculation. For example, the set of cameras may be slightly rotated off level. Through a process known as image rectification
Image rectification
Image rectification is a transformation process used to project two-or-more images onto a common image plane. It corrects image distortion by transforming the image into a standard coordinate system....

, both images are rotated to allow for disparities in only the horizontal direction (i.e. there is no disparity in the y image coordinates). This is a property that can also be achieved by precise alignment of the stereo cameras before image capture.

Computer algorithm

After rectification, the correspondence problem
Correspondence problem
The correspondence problem tries to figure out which parts of an image correspond to which parts of another image, after the camera has moved, time has elapsed, and/or the objects have moved around.-Overview:...

 can be solved using an algorithm that scans both the left and right images for matching image features. A common approach to this problem is to form a smaller image patch around every pixel in the left image. These image patches are compared to all possible disparities in the right image by comparing their corresponding image patches. For example, for a disparity of 1, the patch in the left image would be compared to a similar-sized patch in the right, shifted to the left by one pixel. The comparison between these two patches can be made by attaining a computational measure from one of the following equations that compares each of the pixels in the patches. For all of the following equations, L and R refer to the right and left columns while r and c refer to the current row and column of either images being examined. "d" refers to the disparity of the right image.
  • Normalized correlation:

  • Sum of squared differences:

  • Sum of absolute differences:


The disparity with the lowest computed value using one of the above methods is considered the disparity for the image feature. This lowest score indicates that the algorithm has found the best match of corresponding features in both images.

The method described above is a brute-force search
Brute-force search
In computer science, brute-force search or exhaustive search, also known as generate and test, is a trivial but very general problem-solving technique that consists of systematically enumerating all possible candidates for the solution and checking whether each candidate satisfies the problem's...

 algorithm. With large patch and/or image sizes, this technique can be very time consuming as pixels are constantly being re-examined to find the lowest correlation score. However, this technique also involves unnecessary repetition as many pixels overlap. A more efficient algorithm involves remembering all values from the previous pixel. An even more efficient algorithm involves remembering column sums from the previous row (in addition to remembering all values from the previous pixel). Techniques that save previous information can greatly increase the algorithmic efficiency
Algorithmic efficiency
In computer science, efficiency is used to describe properties of an algorithm relating to how much of various types of resources it consumes. Algorithmic efficiency can be thought of as analogous to engineering productivity for a repeating or continuous process, where the goal is to reduce...

 of this image analyzing process.

Uses of disparity from images

Knowledge of disparity can be used in further extraction of information from stereo images. One case that disparity is most useful is for depth/distance calculation. Disparity and distance from the cameras are negatively correlated. As the distance from the cameras increases, the disparity decreases. This allows for depth perception in stereo images. Using geometry and algebra, the points that appear in the 2D stereo images can be mapped as coordinates in 3D space.

This concept is particularly useful for navigation. For example, the Mars Exploration Rover
Mars Exploration Rover
NASA's Mars Exploration Rover Mission is an ongoing robotic space mission involving two rovers, Spirit and Opportunity, exploring the planet Mars...

 uses a similar method for scanning the terrain for obstacles. The rover captures a pair of images with its stereoscopic navigation cameras and disparity calculations are performed in order to detect elevated objects (such as boulders). Additionally, location and speed data can be extracted from subsequent stereo images by measuring the displacement of objects relative to the rover. In some cases, this is the best source of this type of information as the sensors in the wheels may be inaccurate due to slippage.

See also

  • stereopsis
    Stereopsis
    Stereopsis refers to impression of depth that is perceived when a scene is viewed with both eyes by someone with normal binocular vision. Binocular viewing of a scene creates two slightly different images of the scene in the two eyes due the the eyes' different positions on the head...

  • parallax
    Parallax
    Parallax is a displacement or difference in the apparent position of an object viewed along two different lines of sight, and is measured by the angle or semi-angle of inclination between those two lines. The term is derived from the Greek παράλλαξις , meaning "alteration"...

  • Binocular summation
    Binocular summation
    Binocular summation is the process by which the brain combines the information it receives from the left and the right eyes....

  • binocular vision
    Binocular vision
    Binocular vision is vision in which both eyes are used together. The word binocular comes from two Latin roots, bini for double, and oculus for eye. Having two eyes confers at least four advantages over having one. First, it gives a creature a spare eye in case one is damaged. Second, it gives a...

  • autostereogram
    Autostereogram
    An autostereogram is a single-image stereogram , designed to create the visual illusion of a three-dimensional scene from a two-dimensional image in the human brain...

  • image rectification
    Image rectification
    Image rectification is a transformation process used to project two-or-more images onto a common image plane. It corrects image distortion by transforming the image into a standard coordinate system....

  • computer vision
    Computer vision
    Computer vision is a field that includes methods for acquiring, processing, analysing, and understanding images and, in general, high-dimensional data from the real world in order to produce numerical or symbolic information, e.g., in the forms of decisions...

The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK