Carbon fiber-reinforced polymer
Encyclopedia
Carbon-fiber-reinforced polymer or carbon-fiber-reinforced plastic (CFRP or CRP or often simply carbon fiber), is a very strong and light fiber-reinforced polymer which contains carbon fibers. The polymer
is most often epoxy
, but other polymers, such as polyester
, vinyl ester or nylon
, are sometimes used. The composite
may contain other fibers such as Kevlar
, aluminium
, glass fibers as well as carbon fiber. The strongest and most expensive of these additives, carbon nanotube
s, are contained in some primarily polymer "baseball bats, car parts" and even "golf clubs" http://www.aiche.org/uploadedFiles/Publications/CEPMagazine/051128_public.pdf where economically viable.
Although it can be relatively expensive, it has many applications in aerospace and automotive fields, as well as in sailboats, and notably finds use in modern bicycles and motorcycles, where its high strength-to-weight ratio and good rigidity is of importance. Improved manufacturing techniques are reducing the costs and time to manufacture, making it increasingly common in small consumer goods as well, such as laptops, tripods, fishing rods, paintball
equipment, archery equipment, tent poles, racquet frames, stringed instrument bodies, drum shells, golf clubs, and pool/billiards/snooker cues.
Other terms used to refer to the material: carbon fiber, graphite-reinforced polymer or graphite fiber-reinforced polymer (GFRP is less common since it clashes with glass-(fiber)-reinforced polymer). In product advertisements, it is sometimes referred to simply as graphite fiber (graphite fibre), for short.
in the shape of the final product. The alignment and weave of the cloth fibers is chosen to optimize the strength and stiffness properties of the resulting material. The mold is then filled with epoxy
and is heated or air-cured. The resulting part is very corrosion-resistant, stiff, and strong for its weight. Parts used in less critical areas are manufactured by draping cloth over a mold, with epoxy either preimpregnated into the fibers (also known as pre-preg
) or "painted" over it. High-performance parts using single molds are often vacuum-bagged and/or autoclave
-cured, because even small air bubbles in the material will reduce strength.
pressures to purge the residual gases out.
. This is a two-piece (male and female) mold usually made out of fiberglass or aluminum that is bolted together with the fabric and resin between the two. The benefit is that, once it is bolted together, it is relatively clean and can be moved around or stored without a vacuum until after curing. However, the molds require a lot of material to hold together through many uses under that pressure.
can be used to make pieces.
The primary element of CFRP is a fibre. From that, an unidirectional sheet is usually created. These can be layered onto each other in a quasi-isotropic layup, e.g. 0, +60, −60 degrees relative to each other. From the elementary fibre, a bidirectional woven sheet can be created, i.e. a twill
with a 2/2 weave.
Many supercar
s over the past few decades have incorporated CFRP extensively in their manufacture, using it for their monocoque
chassis as well as other components.
Cast vinyl has also been used in automotive applications for astetics, as well as heat and abrasion resistance. Most top of the line cast vinyl materials such as 3M's DiNoc (interior use) and SI's Si-1000 3D (exterior use) have lifespans of 10+ years when installed correctly.
Until recently, the material has had limited use in mass-produced cars because of the expense involved in terms of materials, equipment, and the relatively limited pool of individuals with expertise in working with it. Recently, several mainstream vehicle manufacturers have started to use CFRP in everyday road cars.
Use of the material has been more readily adopted by low-volume manufacturers who used it primarily for creating body-panels for some of their high-end cars due to its increased strength and decreased weight compared with the glass-reinforced polymer they used for the majority of their products.
Use of carbon fiber in a vehicle can appreciably reduces the weight and hence the size of its frame. This will also facilitate designers/ engineers more creativity and more in-cabin space for commuters.
applications. Studied in an academic context as to its potential benefits in construction, it has also proved itself cost-effective in a number of field applications strengthening concrete, masonry, steel, cast iron, and timber structures. Its use in industry can be either for retrofitting to strengthen an existing structure or as an alternative reinforcing (or prestressing material) instead of steel from the outset of a project.
Retrofitting has become the increasingly dominant use of the material in civil engineering, and applications include increasing the load capacity of old structures (such as bridge
s) that were designed to tolerate far lower service loads than they are experiencing today, seismic retrofitting, and repair of damaged structures. Retrofitting is popular in many instances as the cost of replacing the deficient structure can greatly exceed its strengthening using CFRP.
Applied to reinforced concrete structures for flexure, CFRP typically has a large impact on strength (doubling or more the strength of the section is not uncommon), but only a moderate increase in stiffness (perhaps a 10% increase). This is because the material used in this application is typically very strong (e.g., 3000 MPa ultimate tensile strength
, more than 10 times mild steel) but not particularly stiff (150 to 250 GPa, a little less than steel, is typical). As a consequence, only small cross-sectional areas of the material are used. Small areas of very high strength but moderate stiffness material will significantly increase strength, but not stiffness.
CFRP can also be applied to enhance shear strength of reinforced concrete by wrapping fabrics or fibers around the section to be strengthened. Wrapping around sections (such as bridge or building columns) can also enhance the ductility of the section, greatly increasing the resistance to collapse under earthquake loading. Such 'seismic retrofit' is the major application in earthquake-prone areas, since it is much more economic than alternative methods.
If a column is circular (or nearly so) an increase in axial capacity is also achieved by wrapping. In this application, the confinement of the CFRP wrap enhances the compressive strength of the concrete. However, although large increases are achieved in the ultimate collapse load, the concrete will crack at only slightly enhanced load, meaning that this application is only occasionally used.
Specialist ultra-high modulus CFRP (with tensile modulus of 420 GPa or more) is one of the few practical methods of strengthening cast-iron beams. In typical use, it is bonded to the tensile flange of the section, both increasing the stiffness of the section and lowering the neutral axis, thus greatly reducing the maximum tensile stress in the cast iron.
When used as a replacement for steel, CFRP bars could be used to reinforce concrete structures, however the applications are not common.
CFRP could be used as prestressing materials due to their high strength. The advantages of CFRP over steel as a prestressing material, namely its light weight and corrosion resistance, should enable the material to be used for niche applications such as in offshore environments. However, there are practical difficulties in anchorage of carbon fiber strands and applications of this are rare.
In the United States, prestressed concrete cylinder pipes (PCCP) account for a vast majority of water transmission mains. Due to their large diameters, failures of PCCP are usually catastrophic and affect large populations. Approximately 19,000 miles of PCCP have been installed between 1940 and 2006. Corrosion in the form of hydrogen embrittlement has been blamed for the gradual deterioration of the prestressing wires in many PCCP lines. Over the past decade, CFRPs have been utilized to internally line PCCP, resulting in a fully structural strengthening system. Inside a PCCP line, the CFRP liner acts as a barrier that controls the level of strain experienced by the steel cylinder in the host pipe. The composite liner enables the steel cylinder to perform within its elastic range, to ensure the pipeline's long-term performance is maintained. CFRP liner designs are based on strain compatibility between the liner and host pipe.
CFRP is a more costly material than its counterparts in the construction industry, glass fiber-reinforced polymer (GFRP) and aramid fiber-reinforced polymer (AFRP), though CFRP is, in general, regarded as having superior properties.
Much research continues to be done on using CFRP both for retrofitting and as an alternative to steel as a reinforcing or prestressing material. Cost remains an issue and long-term durability questions still remain. Some are concerned about the brittle nature of CFRP, in contrast to the ductility of steel. Though design codes have been drawn up by institutions such as the American Concrete Institute, there remains some hesitation among the engineering community about implementing these alternative materials. In part, this is due to a lack of standardization and the proprietary nature of the fiber and resin combinations on the market.
s. For the same strength, a carbon-fiber frame weighs less than a bicycle tubing
of aluminum or steel
. The choice of weave can be carefully selected to maximize stiffness. The variety of shapes it can be built into has further increased stiffness and also allowed aerodynamic
considerations into tube profiles. Carbon fiber-reinforced polymer frames, forks
, handlebars
, seatpost
s, and crank arm
s are becoming more common on medium- and higher-priced bicycles. Carbon fiber-reinforced polymer forks are used on most new racing bicycles. Other sporting goods applications include rackets, fishing rods, longboard
s, and rowing
shells
.
Much of the fuselage of the new Boeing 787 Dreamliner and Airbus A350 XWB will be composed of CFRP, making the aircraft lighter than a comparable aluminum fuselage, with the added benefit of less maintenance thanks to CFRP's superior fatigue resistance .
Due to its high ratio of strength to weight, CFRP is widely used in micro air vehicle
s (MAVs). In MAVSTAR Project, the CFRP structures reduce the weight of the MAV significantly. In addition, the high stiffness of the CFRP blades overcome the problem of collision between blades under strong wind.
CFRP has also found application in the construction of high-end audio components such as turntables and loudspeakers, again due to its stiffness.
It is used for parts in a variety of musical instruments, including violin bows, guitar pickguards, and a durable ebony replacement for bagpipe chanters. It is also used to create entire musical instruments such as Blackbird Guitars carbon fiber rider models, Luis and Clark
carbon fiber cellos, and Mix carbon fiber mandolin
s.
In firearms it can substitute for metal, wood, and fiberglass in many areas of a firearm in order to reduce overall weight. However, while it is possible to make the receiver out of synthetic material such as carbon fiber, many of the internal parts are still limited to metal alloys as current reinforced plastics are unsuitable replacements.
Shoe manufacturers use carbon fiber as a shank plate in their basketball sneakers to keep the foot stable. It usually runs the length of the sneaker just above the sole and is left exposed in some areas, usually in the arch of the foot.
CFRP is used, either as standard equipment or in aftermarket parts, in high-performance radio-controlled vehicles and aircraft, i.a. for the main rotor blades of radio controlled helicopters—which should be light and stiff to perform 3D maneuvers.
Fire resistance of polymers or thermoset composites is significantly improved if a thin layer of carbon fibers is molded near the surface—dense, compact layer of carbon fibers efficiently reflects heat.
IBM/Lenovo's ThinkPad
laptops and several Sony laptop models use this technology.
Carbon fiber is a popular material to form the handles of high-end knives.
This material is used when manufacturing squash, tennis and badminton racquets.
Carbon-Graphite spars are used on the frames of high-end Sport kite
s
In 2006 a company introduced cricket bats with a thin carbon fibre layer on the back which were used in competitive matches by high-profile players (e.g. Ricky Ponting
and Michael Hussey
). The carbon fibre was claimed to increase the durability of the bats, however they were banned from all first-class matches by the ICC in 2007.
Carbon-fiber is used in the manufacture of high quality arrows for Archery
.
) and other halogenated polymers, CFRPs can be thermally decomposed via thermal depolymerization
in an oxygen-free environment. This can be accomplished in a refinery in a one-step process. Capture and reuse of the carbon and monomers is then possible. CFRPs can also be milled or shredded at low temperature to reclaim the carbon fiber, however this process shortens the fibers dramatically. Just as with downcycled
paper, the shortened fibers cause the recycled material to be weaker than the original material. There are still many industrial applications that do not need the strength of full-length carbon fiber reinforcement. For example, chopped reclaimed carbon fiber can be used in consumer electronics, such as laptops. It provides excellent reinforcement of the polymers used even if it lacks the strength-to-weight ratio of an aerospace component.
Despite its high initial strength-to-weight ratio, one structural limitation of CFRP is its lack of a fatigue endurance limit. As such, failure cannot be theoretically ruled out from a high enough number of stress cycles. By contrast, steel and certain other structural metals and alloys do have an estimable fatigue endurance limit. Because of the complex failure modes of such composites, the fatigue failure properties of CFRP are difficult to predict. As a result, when utilizing CFRP for critical cyclic-loading applications, engineers may need to employ considerable strength safety margins to provide suitable component reliability over a sufficiently long service life.
reinforced polymer (CNRP) is several times stronger than CFRP and is being introduced in the Lockheed Martin F-35 Lightning II as a structural material.
Polymer
A polymer is a large molecule composed of repeating structural units. These subunits are typically connected by covalent chemical bonds...
is most often epoxy
Epoxy
Epoxy, also known as polyepoxide, is a thermosetting polymer formed from reaction of an epoxide "resin" with polyamine "hardener". Epoxy has a wide range of applications, including fiber-reinforced plastic materials and general purpose adhesives....
, but other polymers, such as polyester
Polyester
Polyester is a category of polymers which contain the ester functional group in their main chain. Although there are many polyesters, the term "polyester" as a specific material most commonly refers to polyethylene terephthalate...
, vinyl ester or nylon
Nylon
Nylon is a generic designation for a family of synthetic polymers known generically as polyamides, first produced on February 28, 1935, by Wallace Carothers at DuPont's research facility at the DuPont Experimental Station...
, are sometimes used. The composite
Composite material
Composite materials, often shortened to composites or called composition materials, are engineered or naturally occurring materials made from two or more constituent materials with significantly different physical or chemical properties which remain separate and distinct at the macroscopic or...
may contain other fibers such as Kevlar
Kevlar
Kevlar is the registered trademark for a para-aramid synthetic fiber, related to other aramids such as Nomex and Technora. Developed at DuPont in 1965, this high strength material was first commercially used in the early 1970s as a replacement for steel in racing tires...
, aluminium
Aluminium
Aluminium or aluminum is a silvery white member of the boron group of chemical elements. It has the symbol Al, and its atomic number is 13. It is not soluble in water under normal circumstances....
, glass fibers as well as carbon fiber. The strongest and most expensive of these additives, carbon nanotube
Carbon nanotube
Carbon nanotubes are allotropes of carbon with a cylindrical nanostructure. Nanotubes have been constructed with length-to-diameter ratio of up to 132,000,000:1, significantly larger than for any other material...
s, are contained in some primarily polymer "baseball bats, car parts" and even "golf clubs" http://www.aiche.org/uploadedFiles/Publications/CEPMagazine/051128_public.pdf where economically viable.
Although it can be relatively expensive, it has many applications in aerospace and automotive fields, as well as in sailboats, and notably finds use in modern bicycles and motorcycles, where its high strength-to-weight ratio and good rigidity is of importance. Improved manufacturing techniques are reducing the costs and time to manufacture, making it increasingly common in small consumer goods as well, such as laptops, tripods, fishing rods, paintball
Paintball
Paintball is a sport in which players compete, in teams or individually, to eliminate opponents by tagging them with capsules containing water soluble dye and gelatin shell outside propelled from a device called a paintball marker . Paintballs have a non-toxic, biodegradable, water soluble...
equipment, archery equipment, tent poles, racquet frames, stringed instrument bodies, drum shells, golf clubs, and pool/billiards/snooker cues.
Other terms used to refer to the material: carbon fiber, graphite-reinforced polymer or graphite fiber-reinforced polymer (GFRP is less common since it clashes with glass-(fiber)-reinforced polymer). In product advertisements, it is sometimes referred to simply as graphite fiber (graphite fibre), for short.
Manufacture
The process by which most carbon fiber-reinforced polymer is made varies, depending on the piece being created, the finish (outside gloss) required, and how many of this particular piece are going to be produced. In addition, The choice of matrix can have a profound effect on the properties of the finished composite.Moulding
One method of producing graphite-epoxy parts is by layering sheets of carbon fiber cloth into a moldMolding (process)
Molding or moulding is the process of manufacturing by shaping pliable raw material using a rigid frame or model called a pattern....
in the shape of the final product. The alignment and weave of the cloth fibers is chosen to optimize the strength and stiffness properties of the resulting material. The mold is then filled with epoxy
Epoxy
Epoxy, also known as polyepoxide, is a thermosetting polymer formed from reaction of an epoxide "resin" with polyamine "hardener". Epoxy has a wide range of applications, including fiber-reinforced plastic materials and general purpose adhesives....
and is heated or air-cured. The resulting part is very corrosion-resistant, stiff, and strong for its weight. Parts used in less critical areas are manufactured by draping cloth over a mold, with epoxy either preimpregnated into the fibers (also known as pre-preg
Pre-preg
Pre-preg is a term for "pre-impregnated" composite fibres. These usually take the form of a weave or are uni-directional. They already contain an amount of the matrix material used to bond them together and to other components during manufacture. The pre-preg are mostly stored in cooled areas since...
) or "painted" over it. High-performance parts using single molds are often vacuum-bagged and/or autoclave
Autoclave (industrial)
Industrial autoclaves are pressure vessels used to process parts and materials which require exposure to elevated pressure and temperature. The manufacture of high-performance components from advanced composites often requires autoclave processing....
-cured, because even small air bubbles in the material will reduce strength.
Vacuum bagging
For simple pieces of which relatively few copies are needed, (1–2 per day) a vacuum bag can be used. A fiberglass, carbon fiber or aluminum mold is polished and waxed, and has a release agent applied before the fabric and resin are applied, and the vacuum is pulled and set aside to allow the piece to cure (harden). There are two ways to apply the resin to the fabric in a vacuum mold. One is called a wet layup, where the two-part resin is mixed and applied before being laid in the mold and placed in the bag. The other is a resin induction system, where the dry fabric and mold are placed inside the bag while the vacuum pulls the resin through a small tube into the bag, then through a tube with holes or something similar to evenly spread the resin throughout the fabric. Wire loom works perfectly for a tube that requires holes inside the bag. Both of these methods of applying resin require hand work to spread the resin evenly for a glossy finish with very small pin-holes. A third method of constructing composite materials is known as a dry layup. Here, the carbon fiber material is already impregnated with resin (prepreg) and is applied to the mold in a similar fashion to adhesive film. The assembly is then placed in a vacuum to cure. The dry layup method has the least amount of resin waste and can achieve lighter constructions than wet layup. Also, because larger amounts of resin are more difficult to bleed out with wet layup methods, prepreg parts generally have fewer pinholes. Pinhole elimination with minimal resin amounts generally require the use of autoclaveAutoclave
An autoclave is an instrument used to sterilize equipment and supplies by subjecting them to high pressure saturated steam at 121 °C for around 15–20 minutes depending on the size of the load and the contents. It was invented by Charles Chamberland in 1879, although a precursor known as the...
pressures to purge the residual gases out.
Compression molding
A quicker method uses a compression moldCompression molding
Compression molding is a method of molding in which the molding material, generally preheated, is first placed in an open, heated mold cavity. The mold is closed with a top force or plug member, pressure is applied to force the material into contact with all mold areas, while heat and pressure are...
. This is a two-piece (male and female) mold usually made out of fiberglass or aluminum that is bolted together with the fabric and resin between the two. The benefit is that, once it is bolted together, it is relatively clean and can be moved around or stored without a vacuum until after curing. However, the molds require a lot of material to hold together through many uses under that pressure.
Filament winding
For difficult or convoluted shapes, a filament winderFilament winding
Filament winding is a fabrication technique for manufacturing composite material, usually in the form of cylindrical structures. The process involves winding filaments under varying amounts of tension over a male mould or mandrel. The mandrel rotates while a carriage moves horizontally, laying...
can be used to make pieces.
Structure
Many carbon fiber-reinforced polymer parts are created with a single layer of carbon fabric, and filled with fiberglass. A tool called a chopper gun can be used to quickly create these types of parts. Once a thin shell is created out of carbon fiber, the chopper gun is a pneumatic tool that cuts fiberglass from a roll and sprays resin at the same time, so that the fiberglass and resin are mixed on the spot. The resin is either external mix, wherein the hardener and resin are sprayed separately, or internal, where they are mixed internally, which requires cleaning after every use.The primary element of CFRP is a fibre. From that, an unidirectional sheet is usually created. These can be layered onto each other in a quasi-isotropic layup, e.g. 0, +60, −60 degrees relative to each other. From the elementary fibre, a bidirectional woven sheet can be created, i.e. a twill
Twill
Twill is a type of textile weave with a pattern of diagonal parallel ribs . This is done by passing the weft thread over one or more warp threads and then under two or more warp threads and so on, with a "step" or offset between rows to create the characteristic diagonal pattern. Because of this...
with a 2/2 weave.
Properties
The properties of CFRP depends on the layout of the carbon fiber and the proportion of the carbon fibers relative to the polymer.Automotive uses
Carbon fiber-reinforced polymer is used extensively in high-end automobile racing. The high cost of carbon fiber is mitigated by the material's unsurpassed strength-to-weight ratio, and low weight is essential for high-performance automobile racing. Racecar manufacturers have also developed methods to give carbon fiber pieces strength in a certain direction, making it strong in a load-bearing direction, but weak in directions where little or no load would be placed on the member. Conversely, manufacturers developed omnidirectional carbon fiber weaves that apply strength in all directions. This type of carbon fiber assembly is most widely used in the "safety cell" monocoque chassis assembly of high-performance racecars.Many supercar
Supercar
Supercar is a term used most often to describe an expensive high end car. It has been defined specifically as "a very expensive, fast or powerful car"...
s over the past few decades have incorporated CFRP extensively in their manufacture, using it for their monocoque
Monocoque
Monocoque is a construction technique that supports structural load by using an object's external skin, as opposed to using an internal frame or truss that is then covered with a non-load-bearing skin or coachwork...
chassis as well as other components.
Cast vinyl has also been used in automotive applications for astetics, as well as heat and abrasion resistance. Most top of the line cast vinyl materials such as 3M's DiNoc (interior use) and SI's Si-1000 3D (exterior use) have lifespans of 10+ years when installed correctly.
Until recently, the material has had limited use in mass-produced cars because of the expense involved in terms of materials, equipment, and the relatively limited pool of individuals with expertise in working with it. Recently, several mainstream vehicle manufacturers have started to use CFRP in everyday road cars.
Use of the material has been more readily adopted by low-volume manufacturers who used it primarily for creating body-panels for some of their high-end cars due to its increased strength and decreased weight compared with the glass-reinforced polymer they used for the majority of their products.
Use of carbon fiber in a vehicle can appreciably reduces the weight and hence the size of its frame. This will also facilitate designers/ engineers more creativity and more in-cabin space for commuters.
Civil engineering applications
Carbon fiber reinforced polymer-[CFRP] has over the past two decades become an increasingly notable material used in structural engineeringStructural engineering
Structural engineering is a field of engineering dealing with the analysis and design of structures that support or resist loads. Structural engineering is usually considered a specialty within civil engineering, but it can also be studied in its own right....
applications. Studied in an academic context as to its potential benefits in construction, it has also proved itself cost-effective in a number of field applications strengthening concrete, masonry, steel, cast iron, and timber structures. Its use in industry can be either for retrofitting to strengthen an existing structure or as an alternative reinforcing (or prestressing material) instead of steel from the outset of a project.
Retrofitting has become the increasingly dominant use of the material in civil engineering, and applications include increasing the load capacity of old structures (such as bridge
Bridge
A bridge is a structure built to span physical obstacles such as a body of water, valley, or road, for the purpose of providing passage over the obstacle...
s) that were designed to tolerate far lower service loads than they are experiencing today, seismic retrofitting, and repair of damaged structures. Retrofitting is popular in many instances as the cost of replacing the deficient structure can greatly exceed its strengthening using CFRP.
Applied to reinforced concrete structures for flexure, CFRP typically has a large impact on strength (doubling or more the strength of the section is not uncommon), but only a moderate increase in stiffness (perhaps a 10% increase). This is because the material used in this application is typically very strong (e.g., 3000 MPa ultimate tensile strength
Tensile strength
Ultimate tensile strength , often shortened to tensile strength or ultimate strength, is the maximum stress that a material can withstand while being stretched or pulled before necking, which is when the specimen's cross-section starts to significantly contract...
, more than 10 times mild steel) but not particularly stiff (150 to 250 GPa, a little less than steel, is typical). As a consequence, only small cross-sectional areas of the material are used. Small areas of very high strength but moderate stiffness material will significantly increase strength, but not stiffness.
CFRP can also be applied to enhance shear strength of reinforced concrete by wrapping fabrics or fibers around the section to be strengthened. Wrapping around sections (such as bridge or building columns) can also enhance the ductility of the section, greatly increasing the resistance to collapse under earthquake loading. Such 'seismic retrofit' is the major application in earthquake-prone areas, since it is much more economic than alternative methods.
If a column is circular (or nearly so) an increase in axial capacity is also achieved by wrapping. In this application, the confinement of the CFRP wrap enhances the compressive strength of the concrete. However, although large increases are achieved in the ultimate collapse load, the concrete will crack at only slightly enhanced load, meaning that this application is only occasionally used.
Specialist ultra-high modulus CFRP (with tensile modulus of 420 GPa or more) is one of the few practical methods of strengthening cast-iron beams. In typical use, it is bonded to the tensile flange of the section, both increasing the stiffness of the section and lowering the neutral axis, thus greatly reducing the maximum tensile stress in the cast iron.
When used as a replacement for steel, CFRP bars could be used to reinforce concrete structures, however the applications are not common.
CFRP could be used as prestressing materials due to their high strength. The advantages of CFRP over steel as a prestressing material, namely its light weight and corrosion resistance, should enable the material to be used for niche applications such as in offshore environments. However, there are practical difficulties in anchorage of carbon fiber strands and applications of this are rare.
In the United States, prestressed concrete cylinder pipes (PCCP) account for a vast majority of water transmission mains. Due to their large diameters, failures of PCCP are usually catastrophic and affect large populations. Approximately 19,000 miles of PCCP have been installed between 1940 and 2006. Corrosion in the form of hydrogen embrittlement has been blamed for the gradual deterioration of the prestressing wires in many PCCP lines. Over the past decade, CFRPs have been utilized to internally line PCCP, resulting in a fully structural strengthening system. Inside a PCCP line, the CFRP liner acts as a barrier that controls the level of strain experienced by the steel cylinder in the host pipe. The composite liner enables the steel cylinder to perform within its elastic range, to ensure the pipeline's long-term performance is maintained. CFRP liner designs are based on strain compatibility between the liner and host pipe.
CFRP is a more costly material than its counterparts in the construction industry, glass fiber-reinforced polymer (GFRP) and aramid fiber-reinforced polymer (AFRP), though CFRP is, in general, regarded as having superior properties.
Much research continues to be done on using CFRP both for retrofitting and as an alternative to steel as a reinforcing or prestressing material. Cost remains an issue and long-term durability questions still remain. Some are concerned about the brittle nature of CFRP, in contrast to the ductility of steel. Though design codes have been drawn up by institutions such as the American Concrete Institute, there remains some hesitation among the engineering community about implementing these alternative materials. In part, this is due to a lack of standardization and the proprietary nature of the fiber and resin combinations on the market.
Other applications
The large majority of NHL ice hockey players use carbon-fiber sticks. Carbon-fiber-reinforced polymer has found a lot of use in high-end sports equipment such as racing bicycleRacing bicycle
A racing bicycle, also known as a road bike, is a bicycle designed for competitive road cycling, a sport governed by according to the rules of the Union Cycliste Internationale...
s. For the same strength, a carbon-fiber frame weighs less than a bicycle tubing
Bicycle frame
A bicycle frame is the main component of a bicycle, on to which wheels and other components are fitted. The modern and most common frame design for an upright bicycle is based on the safety bicycle, and consists of two triangles, a main triangle and a paired rear triangle...
of aluminum or steel
Steel
Steel is an alloy that consists mostly of iron and has a carbon content between 0.2% and 2.1% by weight, depending on the grade. Carbon is the most common alloying material for iron, but various other alloying elements are used, such as manganese, chromium, vanadium, and tungsten...
. The choice of weave can be carefully selected to maximize stiffness. The variety of shapes it can be built into has further increased stiffness and also allowed aerodynamic
Aerodynamics
Aerodynamics is a branch of dynamics concerned with studying the motion of air, particularly when it interacts with a moving object. Aerodynamics is a subfield of fluid dynamics and gas dynamics, with much theory shared between them. Aerodynamics is often used synonymously with gas dynamics, with...
considerations into tube profiles. Carbon fiber-reinforced polymer frames, forks
Bicycle fork
A bicycle fork is the portion of a bicycle that holds the front wheel and allows the rider to steer and balance the bicycle. A fork consists of two fork ends which hold the front wheel axle, two blades which join at a fork crown, and a steerer or steering tube to which the handlebars attach ...
, handlebars
Bicycle handlebar
Bicycle handlebar or often bicycle handlebars refers to the steering mechanism for bicycles; the equivalent of a steering wheel. Besides steering, handlebars also often support a portion of the rider's weight, depending on their riding position, and provide a convenient mounting place for brake...
, seatpost
Seatpost
A bicycle seatpost, seatpin, saddlepole, saddle pillar, or saddle pin is a tube that extends upwards from the bicycle frame to the saddle. The amount that it extends out of the frame can usually be adjusted, and there is usually a mark that indicates the minimum insertion...
s, and crank arm
Crankset
The crankset or chainset , is the component of a bicycle drivetrain that converts the reciprocating motion of the rider's legs into rotational motion used to drive the chain, which in turn drives the rear wheel...
s are becoming more common on medium- and higher-priced bicycles. Carbon fiber-reinforced polymer forks are used on most new racing bicycles. Other sporting goods applications include rackets, fishing rods, longboard
Longboard
A longboard generally designates a longer board variant in various board sports.* Longboard * Longboard...
s, and rowing
Sport rowing
Rowing is a sport in which athletes race against each other on rivers, on lakes or on the ocean, depending upon the type of race and the discipline. The boats are propelled by the reaction forces on the oar blades as they are pushed against the water...
shells
Racing shell
In watercraft, a racing shell is an extremely narrow, and often disproportionately long, rowing boat specifically designed for racing or exercise. It is outfitted with long oars, outriggers to hold the oarlocks away from the boat, and sliding seats...
.
Much of the fuselage of the new Boeing 787 Dreamliner and Airbus A350 XWB will be composed of CFRP, making the aircraft lighter than a comparable aluminum fuselage, with the added benefit of less maintenance thanks to CFRP's superior fatigue resistance .
Due to its high ratio of strength to weight, CFRP is widely used in micro air vehicle
Micro air vehicle
A micro air vehicle , or micro aerial vehicle , is a class of unmanned aerial vehicles that has a size restriction and may be autonomous. Modern craft can be as small as 15 centimetres...
s (MAVs). In MAVSTAR Project, the CFRP structures reduce the weight of the MAV significantly. In addition, the high stiffness of the CFRP blades overcome the problem of collision between blades under strong wind.
CFRP has also found application in the construction of high-end audio components such as turntables and loudspeakers, again due to its stiffness.
It is used for parts in a variety of musical instruments, including violin bows, guitar pickguards, and a durable ebony replacement for bagpipe chanters. It is also used to create entire musical instruments such as Blackbird Guitars carbon fiber rider models, Luis and Clark
Luis and Clark
Luis and Clark is a line of carbon fiber stringed instruments designed by cellist Luis Leguía of the Boston Symphony Orchestra. The line currently consists of a violin, viola, cello and double bass, all of which are fabricated by Matt Dunham, a Rhode Island boat maker...
carbon fiber cellos, and Mix carbon fiber mandolin
Mandolin
A mandolin is a musical instrument in the lute family . It descends from the mandore, a soprano member of the lute family. The mandolin soundboard comes in many shapes—but generally round or teardrop-shaped, sometimes with scrolls or other projections. A mandolin may have f-holes, or a single...
s.
In firearms it can substitute for metal, wood, and fiberglass in many areas of a firearm in order to reduce overall weight. However, while it is possible to make the receiver out of synthetic material such as carbon fiber, many of the internal parts are still limited to metal alloys as current reinforced plastics are unsuitable replacements.
Shoe manufacturers use carbon fiber as a shank plate in their basketball sneakers to keep the foot stable. It usually runs the length of the sneaker just above the sole and is left exposed in some areas, usually in the arch of the foot.
CFRP is used, either as standard equipment or in aftermarket parts, in high-performance radio-controlled vehicles and aircraft, i.a. for the main rotor blades of radio controlled helicopters—which should be light and stiff to perform 3D maneuvers.
Fire resistance of polymers or thermoset composites is significantly improved if a thin layer of carbon fibers is molded near the surface—dense, compact layer of carbon fibers efficiently reflects heat.
IBM/Lenovo's ThinkPad
ThinkPad
ThinkPad is line of laptop computers originally sold by IBM but now produced by Lenovo. They are known for their boxy black design, which was modeled after a traditional Japanese lunchbox...
laptops and several Sony laptop models use this technology.
Carbon fiber is a popular material to form the handles of high-end knives.
This material is used when manufacturing squash, tennis and badminton racquets.
Carbon-Graphite spars are used on the frames of high-end Sport kite
Sport kite
A sport kite, also commonly known as a stunt kite, is a kite that can be maneuvred in the air.A related kit also controllable and used for recreation, but capable of generating a significant amount of pull and used for providing movement is the Power kite.-Competition:Developments in multi-line...
s
In 2006 a company introduced cricket bats with a thin carbon fibre layer on the back which were used in competitive matches by high-profile players (e.g. Ricky Ponting
Ricky Ponting
Ricky Thomas Ponting , nicknamed Punter, is an Australian cricketer, a former captain of the Australian cricket team between 2004 and 2011 in Test cricket and 2002 and 2011 in One Day International cricket. He is a specialist right-handed batsman, slips and close catching fielder, as well as a very...
and Michael Hussey
Michael Hussey
Michael Edward Killeen Hussey is an Australian cricketer, a left-handed specialist batsman. Hussey is also widely known by his nickname Mr Cricket. Hussey was a relative latecomer to both the one-day international and Test Australian teams, debuting at 28 and 30 years of age in the respective...
). The carbon fibre was claimed to increase the durability of the bats, however they were banned from all first-class matches by the ICC in 2007.
Carbon-fiber is used in the manufacture of high quality arrows for Archery
Archery
Archery is the art, practice, or skill of propelling arrows with the use of a bow, from Latin arcus. Archery has historically been used for hunting and combat; in modern times, however, its main use is that of a recreational activity...
.
End of useful life/recycling
Carbon fiber-reinforced polymers (CFRPs) have a long service lifetime when protected from the sun. When it is time to decommission CFRPs, they cannot be melted down in air like many metals. When free of vinyl (PVC or polyvinyl chloridePolyvinyl chloride
Polyvinyl chloride, commonly abbreviated PVC, is a thermoplastic polymer. It is a vinyl polymer constructed of repeating vinyl groups having one hydrogen replaced by chloride. Polyvinyl chloride is the third most widely produced plastic, after polyethylene and polypropylene. PVC is widely used in...
) and other halogenated polymers, CFRPs can be thermally decomposed via thermal depolymerization
Thermal depolymerization
Thermal depolymerization is a depolymerization process using hydrous pyrolysis for the reduction of complex organic materials into light crude oil. It mimics the natural geological processes thought to be involved in the production of fossil fuels...
in an oxygen-free environment. This can be accomplished in a refinery in a one-step process. Capture and reuse of the carbon and monomers is then possible. CFRPs can also be milled or shredded at low temperature to reclaim the carbon fiber, however this process shortens the fibers dramatically. Just as with downcycled
Downcycling
Downcycling is the process of converting waste materials or useless products into new materials or products of lesser quality and reduced functionality...
paper, the shortened fibers cause the recycled material to be weaker than the original material. There are still many industrial applications that do not need the strength of full-length carbon fiber reinforcement. For example, chopped reclaimed carbon fiber can be used in consumer electronics, such as laptops. It provides excellent reinforcement of the polymers used even if it lacks the strength-to-weight ratio of an aerospace component.
Despite its high initial strength-to-weight ratio, one structural limitation of CFRP is its lack of a fatigue endurance limit. As such, failure cannot be theoretically ruled out from a high enough number of stress cycles. By contrast, steel and certain other structural metals and alloys do have an estimable fatigue endurance limit. Because of the complex failure modes of such composites, the fatigue failure properties of CFRP are difficult to predict. As a result, when utilizing CFRP for critical cyclic-loading applications, engineers may need to employ considerable strength safety margins to provide suitable component reliability over a sufficiently long service life.
Carbon nanotube reinforced polymer (CNRP)
Carbon nanotubeCarbon nanotube
Carbon nanotubes are allotropes of carbon with a cylindrical nanostructure. Nanotubes have been constructed with length-to-diameter ratio of up to 132,000,000:1, significantly larger than for any other material...
reinforced polymer (CNRP) is several times stronger than CFRP and is being introduced in the Lockheed Martin F-35 Lightning II as a structural material.
External links
- Japan Carbon Fiber Manufacturers Association (English)
- Carbon fiber information from the Department of Polymer Science at University of Southern Mississippi
- Engineers design composite bracing system for injured Hokie running back Cedric Humes
- The New Steel a 1968 FlightFlight InternationalFlight International is a global aerospace weekly publication produced in the UK. Founded in 1909, it is the world's oldest continuously published aviation news magazine...
article on the announcement of carbon fibre - Carbon Fibres – the First Five Years A 1971 Flight article on carbon fibre in the aviation field