Carbon nanotubes in photovoltaics
Encyclopedia
Organic photovoltaic devices (OPVs) are fabricated from thin films of organic semiconductor
s, such as polymers and small-molecule compounds, and are typically on the order of 100 nm thick. Because polymer based OPVs can be made using a coating process such as spin coating or inkjet printing, they are an attractive option for inexpensively covering large areas as well as flexible plastic surfaces. A promising low cost alternative to silicon solar cells, there is a large amount of research being dedicated throughout industry and academia towards developing OPVs and increasing their power conversion efficiency.
The dispersion of CNTs in a solution of an electron donating conjugated polymer is perhaps the most common strategy to implement CNT materials into OPVs. Generally poly(3-hexylthiophene)
(P3HT) or poly(3-octylthiophene) (P3OT) are used for this purpose. These blends are then spin coated onto a transparent conductive electrode with thicknesses that vary from 60 to 120 nm. These conductive electrodes are usually glass covered with indium tin oxide
(ITO) and a 40 nm sublayer of poly(3,4-ethylenedioxythiophene)
(PEDOT) and poly(styrenesulfonate)
(PSS). PEDOT and PSS help to smooth the ITO surface, decreasing the density of pinholes and stifling current leakage that occurs along shunting paths. Through thermal evaporation or sputter coating, a 20 to 70 nm thick layer of aluminum and sometimes an intermediate layer of lithium fluoride are then applied onto the photoactive material. Multiple research investigations with both multi-walled carbon nanotubes (MWCNTs) and single-walled carbon nanotubes (SWCNTs) integrated into the photoactive material have been completed.
Enhancements of more than two orders of magnitude have been observed in the photocurrent from adding SWCNTs to the P3OT matrix. Improvements were speculated to be due to charge separation at polymer–SWCNT connections and more efficient electron transport through the SWCNTs. However, a rather low power conversion efficiency of 0.04% under 100 mW/cm2 white illumination was observed for the device suggesting incomplete exciton dissociation at low CNT concentrations of 1.0% wt. Because the lengths of the SWCNTs were similar to the thickness of photovoltaic films, doping a higher percentage of SWCNTs into the polymer matrix was believed to cause short circuits. To supply additional dissociation sites, other researchers have physically blended functionalized MWCNTs into P3HT polymer to create a P3HT-MWCNT with fullerene C60 double-layered device. However, the power efficiency was still relatively low at 0.01% under 100 mW/cm2 white illumination. Weak exciton diffusion toward the donor–acceptor interface in the bilayer structure may have been the cause in addition to the fullerene C60 layer possibly experiencing poor electron transport.
More recently, a polymer photovoltaic device from C60-modified SWCNTs and P3HT has been fabricated. Microwave irradiating a mixture of aqueous SWCNT solution and C60 solution in toluene
was the first step in making these polymer-SWCNT composites. Conjugated polymer P3HT was then added resulting in a power conversion efficiency of 0.57% under simulated solar irradiation (95 mW/cm2). It was concluded that improved short circuit current density was a direct result of the addition of SWCNTs into the composite causing faster electron transport via the network of SWCNTs. It was also concluded that the morphology change led to an improved the fill factor. Overall, the main result was improved power conversion efficiency with the addition of SWCNTs, compared to cells without SWCNTs; however, further optimization was thought to be possible.
Additionally, it has been found that heating to the point beyond the glass transition temperature of either P3HT or P3OT after construction can be beneficial for manipulating the phase separation of the blend. This heating also affects the ordering of the polymeric chains because the polymers are microcrystalline systems and it improves charge transfer
, charge transport, and charge collection throughout the OPV device. The hole mobility and power efficiency of the polymer-CNT device also increased significantly as a result of this ordering.
Emerging as another valuable approach for deposition, the use of tetraoctylammonium bromide
in tetrahydrofuran
has also been the subject of investigation to assist in suspension by exposing SWCNTs to an electrophoretic field. In fact, photoconversion efficiencies of 1.5% and 1.3% were achieved when SWCNTs were deposited in combination with light harvesting cadmium sulfide
(CdS) quantum dot
s and porphyrins, respectively.
Among the best power conversions achieved to date using CNTs were obtained by depositing a SWCNT layer between the ITO and the PEDOT : PSS or between the PEDOT : PSS and the photoactive blend in a modified ITO/PEDOT : PSS/ P3HT : (6,6)-phenyl-C61-butyric acid methyl ester (PCBM)/Al solar cell. By dip-coating from a hydrophilic
suspension, SWCNT were deposited after an initially exposing the surface to an argon plasma to achieve a power conversion efficiency of 4.9%, compared to 4% without CNTs.
However, even though CNTs have shown potential in the photoactive layer, they have not resulted in a solar cell with a power conversion efficiency greater than the best tandem organic cells (6.5% efficiency). But, it has been shown in most of the previous investigations that the control over a uniform blending of the electron donating conjugated polymer and the electron accepting CNT is one of the most difficult as well as crucial aspects in creating efficient photocurrent collection in CNT-based OPV devices. Therefore, using CNTs in the photoactive layer of OPV devices is still in the initial research stages and there is still room for novel methods to better take advantage of the beneficial properties of CNTs.
Conductive CNT coatings have recently become a prospective substitute based on wide range of methods including spraying
, spin coating
, casting, layer-by-layer, and Langmuir–Blodgett deposition. The transfer from a filter membrane to the transparent support using a solvent or in the form of an adhesive film is another method for attaining flexible and optically transparent CNT films. Other research efforts have shown that films made of arc-discharge CNT can result in a high conductivity and transparency. Furthermore, the work function
of SWCNT networks is in the 4.8 to 4.9 eV range (compared to ITO which has a lower work function of 4.7 eV) leading to the expectation that the SWCNT work function should be high enough to assure efficient hole collection. Another benefit is that SWCNT films exhibit a high optical transparency in a broad spectral range from the UV
-visible to the near-infrared range. Only a few materials retain reasonable transparency in the infrared spectrum while maintaining transparency in the visible part of the spectrum as well as acceptable overall electrical conductivity. SWCNT films are highly flexible, do not creep, do not crack after bending, theoretically have high thermal conductivities to tolerate heat dissipation, and have high radiation resistance. However, the electrical sheet resistance of ITO is an order of magnitude less than the sheet resistance measured for SWCNT films. Nonetheless, initial research studies demonstrate SWCNT thin films can be used as conducting, transparent electrodes for hole collection in OPV devices with efficiencies between 1% and 2.5% confirming that they are comparable to devices fabricated using ITO. Thus, possibilities exist for advancing this research to develop CNT-based transparent electrodes that exceed the performance of traditional ITO materials.
nanoparticle
s have been widely used as a working electrode
for DSSCs because they provide a high efficiency, more than any other metal oxide semiconductor investigated. Yet the highest conversion efficiency under air mass (AM) 1.5 (100 mW/cm2) irradiation reported for this device to date is about 11%. Despite this initial success, the effort to further enhance efficiency has not produced any major results. The transport of electrons across the particle network has been a key problem in achieving higher photoconversion efficiency in nanostructured electrodes. Because electrons encounter many grain boundaries during the transit and experience a random path, the probability of their recombination with oxidized sensitizer is increased. Therefore, it is not adequate to enlarge the oxide electrode surface area to increase efficiency because photo-generated charge recombination should be prevented. Promoting electron transfer through film electrodes and blocking interface states lying below the edge of the conduction band are some of the non-CNT based strategies to enhance efficiency that have been employed.
With recent progress in CNT development and fabrication, there is promise to use various CNT based nanocomposites and nanostructures to direct the flow of photogenerated electrons and assist in charge injection and extraction. To assist the electron transport to the collecting electrode surface in a DSSC, a popular concept is to utilize CNT networks as support to anchor light harvesting semiconductor particles. Research efforts along these lines include organizing CdS quantum dots on SWCNTs. Charge injection from excited CdS into SWCNTs was documented upon excitation of CdS nanoparticles. Other varieties of semiconductor particles including CdSe
and CdTe
can induce charge-transfer processes under visible light irradiation when attached to CNTs. Including porphyrin and C60 fullerene, organization of photoactive donor polymer and acceptor fullerene on electrode surfaces has also been shown to offer considerable improvement in the photoconversion efficiency of solar cells. Therefore, there is an opportunity to facilitate electron transport and increase the photoconversion efficiency of DSSCs utilizing the electron-accepting ability of semiconducting SWCNTs.
Other researchers fabricated DSSCs using the sol-gel method to obtain titanium dioxide coated MWCNTs for use as an electrode. Because pristine MWCNTs have a hydrophobic
surface and poor dispersion stability, pretreatment was necessary for this application. A relatively low-destruction method for removing impurities, H2O2
treatment was used to generate carboxylic acid
groups by oxidation of MWCNTs. Another positive aspect was the fact that the reaction gases including and H2O were non-toxic and could be released safely during the oxidation process. As a result of treatment, H2O2 exposed MWCNTs have a hydrophilic surface and the carboxylic acid groups on the surface have polar covalent bonding. Also, the negatively charged surface of the MWCNTs improved the stability of dispersion. By then entirely surrounding the MWCNTs with titanium dioxide nanoparticles using the sol-gel method, an increase in the conversion efficiency of about 50% compared to a conventional titanium dioxide cell was achieved. The enhanced interconnectivity between the titanium dioxide particles and the MWCNTs in the porous titanium dioxide film was concluded to be the cause of the improvement in short circuit current density. Here again, the addition of MWCNTs was thought to provide more efficient electron transfer through film in the DSSC.
Organic semiconductor
An organic semiconductor is an organic material with semiconductor properties. Single molecules, short chain and organic polymers can be semiconductive. Semiconducting small molecules include the polycyclic aromatic compounds pentacene, anthracene, and rubrene...
s, such as polymers and small-molecule compounds, and are typically on the order of 100 nm thick. Because polymer based OPVs can be made using a coating process such as spin coating or inkjet printing, they are an attractive option for inexpensively covering large areas as well as flexible plastic surfaces. A promising low cost alternative to silicon solar cells, there is a large amount of research being dedicated throughout industry and academia towards developing OPVs and increasing their power conversion efficiency.
Carbon nanotube composites in the photoactive layer
Combining the physical and chemical characteristics of conjugated polymers with the high conductivity along the tube axis of carbon nanotubes (CNTs) provides a great deal of incentive to disperse CNTs into the photoactive layer in order to obtain more efficient OPV devices. The interpenetrating bulk donor–acceptor heterojunction in these devices can achieve charge separation and collection because of the existence of a bicontinuous network. Along this network, electrons and holes can travel toward their respective contacts through the electron acceptor and the polymer hole donor. Photovoltaic efficiency enhancement is proposed to be due to the introduction of internal polymer/nanotube junctions within the polymer matrix. The high electric field at these junctions can split up the excitons, while the single-walled carbon nanotube (SWCNT) can act as a pathway for the electrons.The dispersion of CNTs in a solution of an electron donating conjugated polymer is perhaps the most common strategy to implement CNT materials into OPVs. Generally poly(3-hexylthiophene)
Polythiophene
Polythiophenes result from the polymerization of thiophenes, a sulfur heterocycle, that can become conducting when electrons are added or removed from the conjugated π-orbitals via doping....
(P3HT) or poly(3-octylthiophene) (P3OT) are used for this purpose. These blends are then spin coated onto a transparent conductive electrode with thicknesses that vary from 60 to 120 nm. These conductive electrodes are usually glass covered with indium tin oxide
Indium tin oxide
Indium tin oxide is a solid solution of indium oxide and tin oxide , typically 90% In2O3, 10% SnO2 by weight. It is transparent and colorless in thin layers while in bulk form it is yellowish to grey...
(ITO) and a 40 nm sublayer of poly(3,4-ethylenedioxythiophene)
Poly(3,4-ethylenedioxythiophene)
Poly or PEDOT is a conducting polymer based on 3,4-ethylenedioxylthiophene or EDOT monomer. Advantages of this polymer are optical transparency in its conducting state, high stability and moderate band gap and low redox potential...
(PEDOT) and poly(styrenesulfonate)
Sodium polystyrene sulfonate
Sodium polystyrene sulfonate is a type of polymer and ionomer based on polystyrene. It is the sodium salt of polystyrene sulfonic acid.-Chemical properties:...
(PSS). PEDOT and PSS help to smooth the ITO surface, decreasing the density of pinholes and stifling current leakage that occurs along shunting paths. Through thermal evaporation or sputter coating, a 20 to 70 nm thick layer of aluminum and sometimes an intermediate layer of lithium fluoride are then applied onto the photoactive material. Multiple research investigations with both multi-walled carbon nanotubes (MWCNTs) and single-walled carbon nanotubes (SWCNTs) integrated into the photoactive material have been completed.
Enhancements of more than two orders of magnitude have been observed in the photocurrent from adding SWCNTs to the P3OT matrix. Improvements were speculated to be due to charge separation at polymer–SWCNT connections and more efficient electron transport through the SWCNTs. However, a rather low power conversion efficiency of 0.04% under 100 mW/cm2 white illumination was observed for the device suggesting incomplete exciton dissociation at low CNT concentrations of 1.0% wt. Because the lengths of the SWCNTs were similar to the thickness of photovoltaic films, doping a higher percentage of SWCNTs into the polymer matrix was believed to cause short circuits. To supply additional dissociation sites, other researchers have physically blended functionalized MWCNTs into P3HT polymer to create a P3HT-MWCNT with fullerene C60 double-layered device. However, the power efficiency was still relatively low at 0.01% under 100 mW/cm2 white illumination. Weak exciton diffusion toward the donor–acceptor interface in the bilayer structure may have been the cause in addition to the fullerene C60 layer possibly experiencing poor electron transport.
More recently, a polymer photovoltaic device from C60-modified SWCNTs and P3HT has been fabricated. Microwave irradiating a mixture of aqueous SWCNT solution and C60 solution in toluene
Toluene
Toluene, formerly known as toluol, is a clear, water-insoluble liquid with the typical smell of paint thinners. It is a mono-substituted benzene derivative, i.e., one in which a single hydrogen atom from the benzene molecule has been replaced by a univalent group, in this case CH3.It is an aromatic...
was the first step in making these polymer-SWCNT composites. Conjugated polymer P3HT was then added resulting in a power conversion efficiency of 0.57% under simulated solar irradiation (95 mW/cm2). It was concluded that improved short circuit current density was a direct result of the addition of SWCNTs into the composite causing faster electron transport via the network of SWCNTs. It was also concluded that the morphology change led to an improved the fill factor. Overall, the main result was improved power conversion efficiency with the addition of SWCNTs, compared to cells without SWCNTs; however, further optimization was thought to be possible.
Additionally, it has been found that heating to the point beyond the glass transition temperature of either P3HT or P3OT after construction can be beneficial for manipulating the phase separation of the blend. This heating also affects the ordering of the polymeric chains because the polymers are microcrystalline systems and it improves charge transfer
Charge transfer complex
A charge-transfer complex or electron-donor-acceptor complex is an association of two or more molecules, or of different parts of one very large molecule, in which a fraction of electronic charge is transferred between the molecular entities. The resulting electrostatic attraction provides a...
, charge transport, and charge collection throughout the OPV device. The hole mobility and power efficiency of the polymer-CNT device also increased significantly as a result of this ordering.
Emerging as another valuable approach for deposition, the use of tetraoctylammonium bromide
Tetraoctylammonium bromide
Tetraoctylammonium bromide is a quaternary ammonium compound with the chemical formula: [CH37]4N Br. It is generally used as a phase transfer catalyst between an aqueous solution and an organic solution....
in tetrahydrofuran
Tetrahydrofuran
Tetrahydrofuran is a colorless, water-miscible organic liquid with low viscosity at standard temperature and pressure. This heterocyclic compound has the chemical formula 4O. As one of the most polar ethers with a wide liquid range, it is a useful solvent. Its main use, however, is as a precursor...
has also been the subject of investigation to assist in suspension by exposing SWCNTs to an electrophoretic field. In fact, photoconversion efficiencies of 1.5% and 1.3% were achieved when SWCNTs were deposited in combination with light harvesting cadmium sulfide
Cadmium sulfide
Cadmium sulfide is the inorganic compound with the formula CdS. Cadmium sulfide is a yellow solid. It occurs in nature with two different crystal structures as the rare minerals greenockite and hawleyite, but is more prevalent as an impurity substituent in the similarly structured zinc ores...
(CdS) quantum dot
Quantum dot
A quantum dot is a portion of matter whose excitons are confined in all three spatial dimensions. Consequently, such materials have electronic properties intermediate between those of bulk semiconductors and those of discrete molecules. They were discovered at the beginning of the 1980s by Alexei...
s and porphyrins, respectively.
Among the best power conversions achieved to date using CNTs were obtained by depositing a SWCNT layer between the ITO and the PEDOT : PSS or between the PEDOT : PSS and the photoactive blend in a modified ITO/PEDOT : PSS/ P3HT : (6,6)-phenyl-C61-butyric acid methyl ester (PCBM)/Al solar cell. By dip-coating from a hydrophilic
Hydrophile
A hydrophile, from the Greek "water" and φιλια "love," is a molecule or other molecular entity that is attracted to, and tends to be dissolved by water. A hydrophilic molecule or portion of a molecule is one that has a tendency to interact with or be dissolved by, water and other polar substances...
suspension, SWCNT were deposited after an initially exposing the surface to an argon plasma to achieve a power conversion efficiency of 4.9%, compared to 4% without CNTs.
However, even though CNTs have shown potential in the photoactive layer, they have not resulted in a solar cell with a power conversion efficiency greater than the best tandem organic cells (6.5% efficiency). But, it has been shown in most of the previous investigations that the control over a uniform blending of the electron donating conjugated polymer and the electron accepting CNT is one of the most difficult as well as crucial aspects in creating efficient photocurrent collection in CNT-based OPV devices. Therefore, using CNTs in the photoactive layer of OPV devices is still in the initial research stages and there is still room for novel methods to better take advantage of the beneficial properties of CNTs.
Carbon nanotubes as a transparent electrode
ITO is currently the most popular material used for the transparent electrodes in OPV devices; however, it has a number of deficiencies. For one, it is not very compatible with polymeric substrates due to its high deposition temperature of around 600o C. Traditional ITO also has unfavorable mechanical properties such as being relatively fragile. In addition, the combination of costly layer deposition in vacuum and a limited supply of indium results in high quality ITO transparent electrodes being very expensive. Therefore, developing and commercializing a replacement for ITO is a major focus of OPV research and development.Conductive CNT coatings have recently become a prospective substitute based on wide range of methods including spraying
Aerosol spray
Aerosol spray is a type of dispensing system which creates an aerosol mist of liquid particles. This is used with a can or bottle that contains a liquid under pressure. When the container's valve is opened, the liquid is forced out of a small hole and emerges as an aerosol or mist...
, spin coating
Spin coating
Spin coating is a procedure used to apply uniform thin films to flat substrates. In short, an excess amount of a solution is placed on the substrate, which is then rotated at high speed in order to spread the fluid by centrifugal force...
, casting, layer-by-layer, and Langmuir–Blodgett deposition. The transfer from a filter membrane to the transparent support using a solvent or in the form of an adhesive film is another method for attaining flexible and optically transparent CNT films. Other research efforts have shown that films made of arc-discharge CNT can result in a high conductivity and transparency. Furthermore, the work function
Work function
In solid-state physics, the work function is the minimum energy needed to remove an electron from a solid to a point immediately outside the solid surface...
of SWCNT networks is in the 4.8 to 4.9 eV range (compared to ITO which has a lower work function of 4.7 eV) leading to the expectation that the SWCNT work function should be high enough to assure efficient hole collection. Another benefit is that SWCNT films exhibit a high optical transparency in a broad spectral range from the UV
Ultraviolet
Ultraviolet light is electromagnetic radiation with a wavelength shorter than that of visible light, but longer than X-rays, in the range 10 nm to 400 nm, and energies from 3 eV to 124 eV...
-visible to the near-infrared range. Only a few materials retain reasonable transparency in the infrared spectrum while maintaining transparency in the visible part of the spectrum as well as acceptable overall electrical conductivity. SWCNT films are highly flexible, do not creep, do not crack after bending, theoretically have high thermal conductivities to tolerate heat dissipation, and have high radiation resistance. However, the electrical sheet resistance of ITO is an order of magnitude less than the sheet resistance measured for SWCNT films. Nonetheless, initial research studies demonstrate SWCNT thin films can be used as conducting, transparent electrodes for hole collection in OPV devices with efficiencies between 1% and 2.5% confirming that they are comparable to devices fabricated using ITO. Thus, possibilities exist for advancing this research to develop CNT-based transparent electrodes that exceed the performance of traditional ITO materials.
CNTs in dye-sensitized solar cells
Due to the simple fabrication process, low production cost, and high efficiency, there is significant interest in dye-sensitized solar cells (DSSCs). Thus, improving DSSC efficiency has been the subject of a variety of research investigations because it has the potential to be manufactured economically enough to compete with other solar cell technologies. Titanium dioxideTitanium dioxide
Titanium dioxide, also known as titanium oxide or titania, is the naturally occurring oxide of titanium, chemical formula . When used as a pigment, it is called titanium white, Pigment White 6, or CI 77891. Generally it comes in two different forms, rutile and anatase. It has a wide range of...
nanoparticle
Nanoparticle
In nanotechnology, a particle is defined as a small object that behaves as a whole unit in terms of its transport and properties. Particles are further classified according to size : in terms of diameter, coarse particles cover a range between 10,000 and 2,500 nanometers. Fine particles are sized...
s have been widely used as a working electrode
Working electrode
The working electrode is the electrode in an electrochemical system on which the reaction of interest is occurring. The working electrode is often used in conjunction with an auxiliary electrode, and a reference electrode in a three electrode system...
for DSSCs because they provide a high efficiency, more than any other metal oxide semiconductor investigated. Yet the highest conversion efficiency under air mass (AM) 1.5 (100 mW/cm2) irradiation reported for this device to date is about 11%. Despite this initial success, the effort to further enhance efficiency has not produced any major results. The transport of electrons across the particle network has been a key problem in achieving higher photoconversion efficiency in nanostructured electrodes. Because electrons encounter many grain boundaries during the transit and experience a random path, the probability of their recombination with oxidized sensitizer is increased. Therefore, it is not adequate to enlarge the oxide electrode surface area to increase efficiency because photo-generated charge recombination should be prevented. Promoting electron transfer through film electrodes and blocking interface states lying below the edge of the conduction band are some of the non-CNT based strategies to enhance efficiency that have been employed.
With recent progress in CNT development and fabrication, there is promise to use various CNT based nanocomposites and nanostructures to direct the flow of photogenerated electrons and assist in charge injection and extraction. To assist the electron transport to the collecting electrode surface in a DSSC, a popular concept is to utilize CNT networks as support to anchor light harvesting semiconductor particles. Research efforts along these lines include organizing CdS quantum dots on SWCNTs. Charge injection from excited CdS into SWCNTs was documented upon excitation of CdS nanoparticles. Other varieties of semiconductor particles including CdSe
Cadmium selenide
Cadmium selenide is a solid, binary compound of cadmium and selenium. Common names for this compound are cadmium selenide, cadmium selenide, and cadmoselite ....
and CdTe
Cadmium telluride
Cadmium telluride is a crystalline compound formed from cadmium and tellurium. It is used as an infrared optical window and a solar cell material. It is usually sandwiched with cadmium sulfide to form a p-n junction photovoltaic solar cell...
can induce charge-transfer processes under visible light irradiation when attached to CNTs. Including porphyrin and C60 fullerene, organization of photoactive donor polymer and acceptor fullerene on electrode surfaces has also been shown to offer considerable improvement in the photoconversion efficiency of solar cells. Therefore, there is an opportunity to facilitate electron transport and increase the photoconversion efficiency of DSSCs utilizing the electron-accepting ability of semiconducting SWCNTs.
Other researchers fabricated DSSCs using the sol-gel method to obtain titanium dioxide coated MWCNTs for use as an electrode. Because pristine MWCNTs have a hydrophobic
Hydrophobe
In chemistry, hydrophobicity is the physical property of a molecule that is repelled from a mass of water....
surface and poor dispersion stability, pretreatment was necessary for this application. A relatively low-destruction method for removing impurities, H2O2
Hydrogen peroxide
Hydrogen peroxide is the simplest peroxide and an oxidizer. Hydrogen peroxide is a clear liquid, slightly more viscous than water. In dilute solution, it appears colorless. With its oxidizing properties, hydrogen peroxide is often used as a bleach or cleaning agent...
treatment was used to generate carboxylic acid
Carboxylic acid
Carboxylic acids are organic acids characterized by the presence of at least one carboxyl group. The general formula of a carboxylic acid is R-COOH, where R is some monovalent functional group...
groups by oxidation of MWCNTs. Another positive aspect was the fact that the reaction gases including and H2O were non-toxic and could be released safely during the oxidation process. As a result of treatment, H2O2 exposed MWCNTs have a hydrophilic surface and the carboxylic acid groups on the surface have polar covalent bonding. Also, the negatively charged surface of the MWCNTs improved the stability of dispersion. By then entirely surrounding the MWCNTs with titanium dioxide nanoparticles using the sol-gel method, an increase in the conversion efficiency of about 50% compared to a conventional titanium dioxide cell was achieved. The enhanced interconnectivity between the titanium dioxide particles and the MWCNTs in the porous titanium dioxide film was concluded to be the cause of the improvement in short circuit current density. Here again, the addition of MWCNTs was thought to provide more efficient electron transfer through film in the DSSC.
See also
- Optical properties of carbon nanotubesOptical properties of carbon nanotubesWithin materials science, the optical properties of carbon nanotubes refer specifically to the absorption, photoluminescence, and Raman spectroscopy of carbon nanotubes. Spectroscopic methods offer the possibility of quick and non-destructive characterization of relatively large amounts of carbon...
- Carbon nanotubeCarbon nanotubeCarbon nanotubes are allotropes of carbon with a cylindrical nanostructure. Nanotubes have been constructed with length-to-diameter ratio of up to 132,000,000:1, significantly larger than for any other material...
- Selective chemistry of single-walled nanotubes
- Allotropes of carbonAllotropes of carbonThis is a list of the allotropes of carbon.-Diamond:Diamond is one of the most well known allotropes of carbon. The hardness and high dispersion of light of diamond make it useful for both industrial applications and jewellery. Diamond is the hardest known natural mineral. This makes it an...