Cartographic generalization
Encyclopedia
Cartographic generalization is the method whereby information is selected and represented on a map
in a way that adapts to the scale of the display medium of the map, not necessarily preserving all intricate geographical or other cartographic
details. The cartographer is given license to adjust the content within their maps to create a suitable and useful map that conveys geospatial information, while striking the right balance between the map's purpose and actuality of the subject being mapped.
Well generalized
maps are those that emphasize the most important map elements while still representing the world in the most faithful and recognizable way. The level of detail and importance in what is remaining on the map must outweigh the insignificance of items that were generalized, as to preserve the distinguishing characteristics of what makes the map useful and important.
by strategically reducing ancillary and unnecessary details. One way that geospatial
data can be reduced is through the selection process. The cartographer can select and retain certain elements that he/she deems the most necessary or appropriate. In this method, the most important elements stand out while lesser elements are left out entirely. For example, a directional map between two points may have lesser and un-traveled roadways omitted as not to confuse the map-reader. The selection of the most direct and uncomplicated route between the two points is the most important data, and the cartographer may choose to emphasize this.
but would ideally not detract from the map reader interpreting the feature as such a mountain.
is also a process that the map maker can employ to reduce the angularity of line work. Smoothing is yet another way of simplifying the map features, but involves several other characteristics of generalization that lead into feature displacement and locational shifting. The purpose of smoothing is exhibit linework in a much less complicated and a less visually jarring way. An example of smoothing would be for a jagged roadway, cut through a mountain, to be smoothed out so that the angular turns and transitions appear much more fluid and natural.
gained prevalence in the late 20th century and the demand for producing maps automatically increased automated generalization became an important issue for National Mapping Agencies
(NMAs) and other data providers. Thereby automated generalization describes the automated extraction of data (becoming then information) regarding purpose and scale. Different researchers invented conceptual models for automated generalization:
Besides these established models, different views on automated generalization have been established: the representation-oriented view and the process-oriented view. The first view focuses on the representation of data on different scales, which is related to the field of Multi-Representation Database
s (MRDB). The latter view focuses on the process of generalization.
In the context of creating databases on different scales, additionally it can be distinguished between the ladder and the star-approach. The ladder-approach is a stepwise generalization, in which each derived dataset is based on the other database of the next larger scale. The star-approach describes the derived data on all scales is based on a single (large-scale) data base.
Map
A map is a visual representation of an area—a symbolic depiction highlighting relationships between elements of that space such as objects, regions, and themes....
in a way that adapts to the scale of the display medium of the map, not necessarily preserving all intricate geographical or other cartographic
Cartography
Cartography is the study and practice of making maps. Combining science, aesthetics, and technique, cartography builds on the premise that reality can be modeled in ways that communicate spatial information effectively.The fundamental problems of traditional cartography are to:*Set the map's...
details. The cartographer is given license to adjust the content within their maps to create a suitable and useful map that conveys geospatial information, while striking the right balance between the map's purpose and actuality of the subject being mapped.
Well generalized
Generalization
A generalization of a concept is an extension of the concept to less-specific criteria. It is a foundational element of logic and human reasoning. Generalizations posit the existence of a domain or set of elements, as well as one or more common characteristics shared by those elements. As such, it...
maps are those that emphasize the most important map elements while still representing the world in the most faithful and recognizable way. The level of detail and importance in what is remaining on the map must outweigh the insignificance of items that were generalized, as to preserve the distinguishing characteristics of what makes the map useful and important.
Selection
Map generalization is designed to reduce the complexities of the real worldReality
In philosophy, reality is the state of things as they actually exist, rather than as they may appear or might be imagined. In a wider definition, reality includes everything that is and has been, whether or not it is observable or comprehensible...
by strategically reducing ancillary and unnecessary details. One way that geospatial
Geospatial
Geospatial analysis is an approach to applying statistical analysis and other informational techniques to geographically based data. Such analysis employs spatial software and analytical methods with terrestrial or geographic datasets, including geographic information systems and...
data can be reduced is through the selection process. The cartographer can select and retain certain elements that he/she deems the most necessary or appropriate. In this method, the most important elements stand out while lesser elements are left out entirely. For example, a directional map between two points may have lesser and un-traveled roadways omitted as not to confuse the map-reader. The selection of the most direct and uncomplicated route between the two points is the most important data, and the cartographer may choose to emphasize this.
Simplification
Generalization is not a process that only removes and selects data, but also a process that simplifies it as well. Simplification is a technique where shapes of retained features are altered to enhance visibility and reduce complexity. Smaller scale maps have more simplified features than larger scale maps because they simply exhibit more area. An example of simplification is to scale and remove points along an area. Doing this to a mountain would reduce the detail in and around the mountainMountain
Image:Himalaya_annotated.jpg|thumb|right|The Himalayan mountain range with Mount Everestrect 58 14 160 49 Chomo Lonzorect 200 28 335 52 Makalurect 378 24 566 45 Mount Everestrect 188 581 920 656 Tibetan Plateaurect 250 406 340 427 Rong River...
but would ideally not detract from the map reader interpreting the feature as such a mountain.
Combination
Simplification also takes on other roles when considering the role of combination. Overall data reduction techniques can also mean that in addition to generalizing elements of particular features, features can also be combined when their separation is irrelevant to the map focus. A mountain chain may be isolated into several smaller ridges and peaks with intermittent forest in the natural environment, but shown as a contiguous chain on the map, as determined by scale. The map reader has to, again remember, that because of scale limitations combined elements are not concise depictions of natural or manmade features.Smoothing
SmoothingSmoothing
In statistics and image processing, to smooth a data set is to create an approximating function that attempts to capture important patterns in the data, while leaving out noise or other fine-scale structures/rapid phenomena. Many different algorithms are used in smoothing...
is also a process that the map maker can employ to reduce the angularity of line work. Smoothing is yet another way of simplifying the map features, but involves several other characteristics of generalization that lead into feature displacement and locational shifting. The purpose of smoothing is exhibit linework in a much less complicated and a less visually jarring way. An example of smoothing would be for a jagged roadway, cut through a mountain, to be smoothed out so that the angular turns and transitions appear much more fluid and natural.
Enhancement
Enhancement is also a method that can be employed by the cartographer to illuminate specific elements that aid in map reading. As many of the aforementioned generalizing methods focus on the reduction and omission of detail, the enhancement method concentrates on the addition of detail. Enhancement can be used to describe the true character of the feature being represented and is often used by the cartographer to highlight specific details about his or her specific knowledge, that would otherwise be left out. An example includes enhancing the detail about specific river rapids so that the map reader may know the facets of traversing the most difficult sections beforehand. Enhancement can be a valuable tool in aiding the map reader to elements that carry significant weight to the map’s intent.GIS and automated generalization
As GISGeographic Information System
A geographic information system, geographical information science, or geospatial information studies is a system designed to capture, store, manipulate, analyze, manage, and present all types of geographically referenced data...
gained prevalence in the late 20th century and the demand for producing maps automatically increased automated generalization became an important issue for National Mapping Agencies
National mapping agency
A national mapping agency is an organisation, usually publicly owned, that produces topographic maps and geographic information of a country. Some national mapping agencies also deal with cadastral matters.-List of national mapping agencies:...
(NMAs) and other data providers. Thereby automated generalization describes the automated extraction of data (becoming then information) regarding purpose and scale. Different researchers invented conceptual models for automated generalization:
- Gruenreich model
- Brassel & Weibel model
- McMaster & Shea model
Besides these established models, different views on automated generalization have been established: the representation-oriented view and the process-oriented view. The first view focuses on the representation of data on different scales, which is related to the field of Multi-Representation Database
Database
A database is an organized collection of data for one or more purposes, usually in digital form. The data are typically organized to model relevant aspects of reality , in a way that supports processes requiring this information...
s (MRDB). The latter view focuses on the process of generalization.
In the context of creating databases on different scales, additionally it can be distinguished between the ladder and the star-approach. The ladder-approach is a stepwise generalization, in which each derived dataset is based on the other database of the next larger scale. The star-approach describes the derived data on all scales is based on a single (large-scale) data base.