Complex fluids
Encyclopedia
Complex fluids are binary mixture
s that have a coexistence between two phase
s: solid–liquid (suspension
s or solutions of macromolecules such as polymers), solid–gas (granular
), liquid–gas (foam
s) and liquid–liquid (emulsion
s). They exhibit unusual mechanical responses to applied stress
or strain
due to the geometrical constraints that the phase coexistence imposes. The mechanical response includes transitions between solid-like and fluid-like behavior as well as fluctuations. Their mechanical properties can be attributed to characteristics such as high disorder, caging, and clustering on multiple length scales.
is an example of a complex fluid. Without stress, the foam appears to be a solid: it does not flow and can support (very) light loads
. However, when adequate stress is applied, shaving cream flows easily like a fluid. On the level of individual bubbles, the flow is due to rearrangements of small collections of bubbles. On this scale, the flow is not smooth, but instead consists of fluctuations due to rearrangements of the bubbles and releases of stress. These fluctuations are similar to the fluctuations that are studied in earthquake
s.
of the particles in complex fluids are an area of current research. Energy lost due to friction may be a nonlinear function of the velocity and normal forces. The topological inhibition to flow by the crowding of constituent particles is a key element in these systems. Under certain conditions, including high densities
and low temperature
s, when externally driven to induce flow, complex fluids are characterized by irregular intervals of solid-like behavior followed by stress relaxations due to particle rearrangements. The dynamics of these systems are highly nonlinear in nature. The increase in stress by an infinitesimal amount or a small displacement of a single particle can result in the difference between an arrested state and fluid-like behavior.
Although many materials found in nature can fit into to the class of complex fluids, very little is well understood about them. Inconsistent and controversial conclusions concerning their material properties still persists. The careful study of these systems may lead to "new physics" and new states of matter. For example, it has been suggested that these systems can jam and a "jamming phase diagram" can be used to consider how these systems can jam and unjam. It is not known whether further research will demonstrate these findings, or whether such a theoretical framework will prove useful. As yet this large body of theoretical work has been poorly supported with experiments.
Mixture
In chemistry, a mixture is a material system made up by two or more different substances which are mixed together but are not combined chemically...
s that have a coexistence between two phase
Phase (matter)
In the physical sciences, a phase is a region of space , throughout which all physical properties of a material are essentially uniform. Examples of physical properties include density, index of refraction, and chemical composition...
s: solid–liquid (suspension
Suspension (chemistry)
In chemistry, a suspension is a heterogeneous fluid containing solid particles that are sufficiently large for sedimentation. Usually they must be larger than 1 micrometer. The internal phase is dispersed throughout the external phase through mechanical agitation, with the use of certain...
s or solutions of macromolecules such as polymers), solid–gas (granular
Granular material
A granular material is a conglomeration of discrete solid, macroscopic particles characterized by a loss of energy whenever the particles interact . The constituents that compose granular material must be large enough such that they are not subject to thermal motion fluctuations...
), liquid–gas (foam
Foam
-Definition:A foam is a substance that is formed by trapping gas in a liquid or solid in a divided form, i.e. by forming gas regions inside liquid regions, leading to different kinds of dispersed media...
s) and liquid–liquid (emulsion
Emulsion
An emulsion is a mixture of two or more liquids that are normally immiscible . Emulsions are part of a more general class of two-phase systems of matter called colloids. Although the terms colloid and emulsion are sometimes used interchangeably, emulsion is used when both the dispersed and the...
s). They exhibit unusual mechanical responses to applied stress
Stress (physics)
In continuum mechanics, stress is a measure of the internal forces acting within a deformable body. Quantitatively, it is a measure of the average force per unit area of a surface within the body on which internal forces act. These internal forces are a reaction to external forces applied on the body...
or strain
Strain (materials science)
In continuum mechanics, the infinitesimal strain theory, sometimes called small deformation theory, small displacement theory, or small displacement-gradient theory, deals with infinitesimal deformations of a continuum body...
due to the geometrical constraints that the phase coexistence imposes. The mechanical response includes transitions between solid-like and fluid-like behavior as well as fluctuations. Their mechanical properties can be attributed to characteristics such as high disorder, caging, and clustering on multiple length scales.
Example
Shaving creamShaving cream
Shaving cream is a substance that is applied to the face or wherever else hair grows, to provide lubrication and avoid razor burn during shaving. Shaving cream is often bought in a spray can, but can also be purchased in tubs or tubes. Shaving cream in a can is commonly dispensed as a foam or a gel...
is an example of a complex fluid. Without stress, the foam appears to be a solid: it does not flow and can support (very) light loads
Structural load
Structural loads or actions are forces, deformations or accelerations applied to a structure or its components.Loads cause stresses, deformations and displacements in structures. Assessment of their effects is carried out by the methods of structural analysis...
. However, when adequate stress is applied, shaving cream flows easily like a fluid. On the level of individual bubbles, the flow is due to rearrangements of small collections of bubbles. On this scale, the flow is not smooth, but instead consists of fluctuations due to rearrangements of the bubbles and releases of stress. These fluctuations are similar to the fluctuations that are studied in earthquake
Earthquake
An earthquake is the result of a sudden release of energy in the Earth's crust that creates seismic waves. The seismicity, seismism or seismic activity of an area refers to the frequency, type and size of earthquakes experienced over a period of time...
s.
Dynamics
The dynamicsFluid dynamics
In physics, fluid dynamics is a sub-discipline of fluid mechanics that deals with fluid flow—the natural science of fluids in motion. It has several subdisciplines itself, including aerodynamics and hydrodynamics...
of the particles in complex fluids are an area of current research. Energy lost due to friction may be a nonlinear function of the velocity and normal forces. The topological inhibition to flow by the crowding of constituent particles is a key element in these systems. Under certain conditions, including high densities
Density
The mass density or density of a material is defined as its mass per unit volume. The symbol most often used for density is ρ . In some cases , density is also defined as its weight per unit volume; although, this quantity is more properly called specific weight...
and low temperature
Temperature
Temperature is a physical property of matter that quantitatively expresses the common notions of hot and cold. Objects of low temperature are cold, while various degrees of higher temperatures are referred to as warm or hot...
s, when externally driven to induce flow, complex fluids are characterized by irregular intervals of solid-like behavior followed by stress relaxations due to particle rearrangements. The dynamics of these systems are highly nonlinear in nature. The increase in stress by an infinitesimal amount or a small displacement of a single particle can result in the difference between an arrested state and fluid-like behavior.
Although many materials found in nature can fit into to the class of complex fluids, very little is well understood about them. Inconsistent and controversial conclusions concerning their material properties still persists. The careful study of these systems may lead to "new physics" and new states of matter. For example, it has been suggested that these systems can jam and a "jamming phase diagram" can be used to consider how these systems can jam and unjam. It is not known whether further research will demonstrate these findings, or whether such a theoretical framework will prove useful. As yet this large body of theoretical work has been poorly supported with experiments.
External links
- Stephan Herminghaus' Dynamics of Complex Fluids Department
- David Weitz's Soft Condensed Matter Physics Laboratory
- Bob Behringer's complex fluids page
- Hernán Alejandro Makse's complex fluids page
- Complex Fluids/Nonlinear Dynamics Laboratory
- Francois Graner's complex fluids page
- Carnegie Mellon University Center for Complex Fluids Engineering
- UCLA Center for Complex Fluids and Interfacial Physics
- Paulo Arratia's Complex Fluids Laboratory at Penn