Compression body
Encyclopedia
In the theory of 3-manifold
3-manifold
In mathematics, a 3-manifold is a 3-dimensional manifold. The topological, piecewise-linear, and smooth categories are all equivalent in three dimensions, so little distinction is made in whether we are dealing with say, topological 3-manifolds, or smooth 3-manifolds.Phenomena in three dimensions...

s, a compression body is a kind of generalized handlebody
Handlebody
In the mathematical field of geometric topology, a handlebody is a decomposition of a manifold into standard pieces. Handlebodies play an important role in Morse theory, cobordism theory and the surgery theory of high-dimensional manifolds...

.

A compression body is either a handlebody
Handlebody
In the mathematical field of geometric topology, a handlebody is a decomposition of a manifold into standard pieces. Handlebodies play an important role in Morse theory, cobordism theory and the surgery theory of high-dimensional manifolds...

 or the result of the following construction:
Let be a compact, closed surface (not necessarily connected). Attach 1- handles to along .

Let be a compression body.
The negative boundary of C, denoted , is . (If is a handlebody then .) The positive boundary of C, denoted , is minus the negative boundary.

There is a dual construction of compression bodies starting with a surface and attaching 2-handles to . In this case is , and is minus the positive boundary.


Compression bodies often arise when manipulating Heegaard splitting
Heegaard splitting
In the mathematical field of geometric topology, a Heegaard splitting is a decomposition of a compact oriented 3-manifold that results from dividing it into two handlebodies.-Definitions:...

s.
The source of this article is wikipedia, the free encyclopedia.  The text of this article is licensed under the GFDL.
 
x
OK