Cumulate rock
Encyclopedia
Cumulate rocks are igneous rocks formed by the accumulation of crystal
s from a magma
either by settling or floating. Cumulate rocks are named according to their texture
; cumulate texture is diagnostic of the conditions of formation of this group of igneous rocks.
magma
chamber. These accumulations typically occur on the floor of the magma chamber, although they are possible on the roofs if anorthite
plagioclase
is able to float free of a denser mafic melt.
Cumulates are typically found in ultramafic intrusions
, in the base of large ultramafic lava
tubes in komatiite
and magnesium
rich basalt
flows and also in some granitic
intrusions.
(Hall, 1996).
Cumulate rocks are typically named according to the cumulate minerals in order of abundance, and then cumulate type (adcumulate, mesocumulate, orthocumulate), and then accessory or minor phases.
For example:
Cumulate terminology is appropriate for use when describing cumulate rocks. In intrusions which have a uniform composition and minimal textural and mineralogical layering or visible crystal accumulations it is inappropriate to describe them according to this convention.
of a parental magma, should not be used to infer the composition of a magma from which they are formed. The chemistry of the cumulate itself can inform on the residual melt composition, but several factors need to be considered.
As an example, a magma of basalt
composition that is precipitating cumulates of anorthite
plagioclase plus enstatite
pyroxene is changing composition by the removal of the elements which make up the precipitated minerals. In this example, the precipitation of anorthite (a calcium
aluminium feldspar
) removes calcium from the melt, which becomes more depleted in calcium. Enstatite being precipitated from the melt will remove magnesium, so the melt becomes depleted in these elements. This tends to enrich the concentration of other elements - typically sodium, potassium, titanium and iron.
The rock that is made of the accumulated minerals will not have the same composition as the magma. In the above example, the cumulate of anorthite + enstatite is rich in calcium and magnesium, and the melt is depleted in calcium and magnesium. The cumulate rock is a plagioclase-pyroxene cumulate (a gabbro) and the melt is now more felsic and aluminous in composition (trending towards andesite
compositions).
In the above example, the plagioclase and pyroxene need not be pure end-member compositions (anorthite-enstatite), and thus the effect of depletion of elements can be complex. The minerals can be precipitated in any ratio within the cumulate; such cumulates can be 90% plagioclase:10% enstatite, through to 10% plagiclase:90% enstatite and remain a gabbro. This also alters the chemistry of the cumulate, and the depletions of the residual melt.
It can be seen that the effect on the composition of the residual melt left behind by the formation of the cumulate is dependent on the composition of the minerals which precipitate, the number of minerals which co-precipitate at the same time, and the ratio of the minerals which co-precipitate. In nature, cumulates usually form from 2 mineral species, although ranges from 1 to 4 mineral species are known. Cumulate rocks which are formed from one mineral alone are often named after the mineral, for example a 99% magnetite cumulate is known as a magnetitite.
A specific example is the Skaergaard intrusion
in Greenland
. At Skaergaard a 2500 m thick layered intrusion shows distinct chemical and mineralogic layering:
The Skaergaard is interpreted to have crystallised from a single confined magma chamber.
conditions (ie; komatiite
s). Investigating magma conditions of large layered ultramafic intrusions is more fraught with problems.
These methods have their drawbacks, primarily that they must all make certain assumptions which rarely hold true in nature. The foremost problem is the fact that in large ultramafic intrusions, assimilation of wall rocks tends to alter the chemistry of the melt as time progresses, so measuring groundmass compositions may fall short. Mass balance calculations will show deviations from expected ranges, which may infer assimilation has occurred, but then further chemistry must be embarked upon to quantify these findings.
Secondly, large ultramafic intrusions are rarely sealed systems and may be subject to regular injections of fresh, primitive magma, or to loss of volume due to further upward migration of the magma (possibly to feed volcanic vents or dyke
swarms). In such cases, calculating magma chemistries may resolve nothing more than the presence of these two processes having affected the intrusion.
intrusions contain such pure anorthite
concentrations that they are mined for feldspar
, for use in refractories
, glassmaking and other sundry uses (toothpaste
, cosmetics
, etcetera).
. This can happen due to fractional enrichment of the melt in iron
, titanium
or chromium
.
These conditions are created by the high-temperature fractionation of highly magnesian olivine and/or pyroxene, which causes a relative iron-enrichment in the residual melt. When the iron content of the melt is sufficiently high enough, magnetite
or ilmenite
crystallise and, due to their high density, form cumulate rocks. Chromite
is generally formed during pyroxene fractionation at low pressures, where chromium is rejected from the pyroxene crystals.
These oxide layers form laterally continuous deposits of rocks containing in excess of 50% oxide minerals. When oxide minerals exceed 90% of the bulk of the interval the rock may be classified according to the oxide mineral, for example magnetitite, ilmenitite or chromitite. Strictly speaking, these would be magnetite orthocumulate, ilmenite orthocumulate and chromite orthocumulates.
, copper
, platinum group elements and cobalt
. Deposits of a mixed massive or mixed sulfide-silicate 'matrix' of pentlandite
, chalcopyrite
, pyrrhotite
and/or pyrite
are formed, occasionally with cobaltite
and platinum-tellurium sulfides. These deposits are formed by melt immiscibility between sulfide and silicate melts in a sulfur-saturated magma.
They are not strictly a cumulate rock, as the sulfide is not precipitated as a solid mineral, but rather as immiscible sulfide liquid. However, they are formed by the same processes and accumulate due to their high specific gravity
, and can form laterally extensive sulfide 'reefs'. The sulfide minerals generally form an interstitial
matrix to a silicate cumulate.
Sulfide mineral segregations can only be formed when a magma attains sulfur saturation. In mafic and ultramafic rocks they form economic Ni, Cu and PGE
deposits because these elements are chalcophile and are strongly partitioned into the sulfide melt. In rare cases, felsic
rocks become sulfur saturated and form sulfide segregations. In this case, the typical result is a disseminated form of sulfide mineral, usually a mixture of pyrrhotite
, pyrite
and chalcopyrite
, forming Cu mineralisation. It is very rare but not unknown to see cumulate sulfide rocks in granitic intrusions.
Crystal
A crystal or crystalline solid is a solid material whose constituent atoms, molecules, or ions are arranged in an orderly repeating pattern extending in all three spatial dimensions. The scientific study of crystals and crystal formation is known as crystallography...
s from a magma
Magma
Magma is a mixture of molten rock, volatiles and solids that is found beneath the surface of the Earth, and is expected to exist on other terrestrial planets. Besides molten rock, magma may also contain suspended crystals and dissolved gas and sometimes also gas bubbles. Magma often collects in...
either by settling or floating. Cumulate rocks are named according to their texture
Rock microstructure
Rock microstructure includes the texture of a rock and the small scale rock structures. The words "texture" and "microstructure" are interchangeable, with the latter preferred in modern geological literature...
; cumulate texture is diagnostic of the conditions of formation of this group of igneous rocks.
Formation
Cumulate rocks are the typical product of precipitation of solid crystals from a fractionatingFractional crystallization (geology)
Fractional crystallization is one of the most important geochemical and physical processes operating within the Earth's crust and mantle. Fractional crystallization is the removal and segregation from a melt of mineral precipitates; except in special cases, removal of the crystals changes the...
magma
Magma
Magma is a mixture of molten rock, volatiles and solids that is found beneath the surface of the Earth, and is expected to exist on other terrestrial planets. Besides molten rock, magma may also contain suspended crystals and dissolved gas and sometimes also gas bubbles. Magma often collects in...
chamber. These accumulations typically occur on the floor of the magma chamber, although they are possible on the roofs if anorthite
Anorthite
Anorthite is the calcium endmember of plagioclase feldspar. Plagioclase is an abundant mineral in the Earth's crust. The formula of pure anorthite is CaAl2Si2O8.-Mineralogy :...
plagioclase
Plagioclase
Plagioclase is an important series of tectosilicate minerals within the feldspar family. Rather than referring to a particular mineral with a specific chemical composition, plagioclase is a solid solution series, more properly known as the plagioclase feldspar series...
is able to float free of a denser mafic melt.
Cumulates are typically found in ultramafic intrusions
Ultramafic to mafic layered intrusions
A layered intrusion is a large sill-like body of igneous rock which exhibits vertical layering or differences in composition and texture. These intrusions typically are many kilometers in area covering from around 100 km2 to over 50,000 km2 and several hundred meters to over a kilometer...
, in the base of large ultramafic lava
Lava
Lava refers both to molten rock expelled by a volcano during an eruption and the resulting rock after solidification and cooling. This molten rock is formed in the interior of some planets, including Earth, and some of their satellites. When first erupted from a volcanic vent, lava is a liquid at...
tubes in komatiite
Komatiite
Komatiite is a type of ultramafic mantle-derived volcanic rock. Komatiites have low silicon, potassium and aluminium, and high to extremely high magnesium content...
and magnesium
Magnesium
Magnesium is a chemical element with the symbol Mg, atomic number 12, and common oxidation number +2. It is an alkaline earth metal and the eighth most abundant element in the Earth's crust and ninth in the known universe as a whole...
rich basalt
Basalt
Basalt is a common extrusive volcanic rock. It is usually grey to black and fine-grained due to rapid cooling of lava at the surface of a planet. It may be porphyritic containing larger crystals in a fine matrix, or vesicular, or frothy scoria. Unweathered basalt is black or grey...
flows and also in some granitic
Granite
Granite is a common and widely occurring type of intrusive, felsic, igneous rock. Granite usually has a medium- to coarse-grained texture. Occasionally some individual crystals are larger than the groundmass, in which case the texture is known as porphyritic. A granitic rock with a porphyritic...
intrusions.
Terminology
Cumulates are named according to their dominant mineralogy and the percentage of crystals to their groundmassMatrix (geology)
The matrix or groundmass of rock is the finer grained mass of material in which larger grains, crystals or clasts are embedded.The matrix of an igneous rock consists of finer grained, often microscopic, crystals in which larger crystals are embedded. This porphyritic texture is indicative of...
(Hall, 1996).
- Adcumulates are rocks containing ~100-93% accumulated magmatic crystals in a fine grained groundmass.
- Mesocumulates are rocks with between 93-85% accumulated minerals in a groundmass.
- Orthocumulates are rocks containing between 85-75% accumulated minerals in groundmass.
Cumulate rocks are typically named according to the cumulate minerals in order of abundance, and then cumulate type (adcumulate, mesocumulate, orthocumulate), and then accessory or minor phases.
For example:
- a layer with 50% plagioclasePlagioclasePlagioclase is an important series of tectosilicate minerals within the feldspar family. Rather than referring to a particular mineral with a specific chemical composition, plagioclase is a solid solution series, more properly known as the plagioclase feldspar series...
, 40% pyroxenePyroxeneThe pyroxenes are a group of important rock-forming inosilicate minerals found in many igneous and metamorphic rocks. They share a common structure consisting of single chains of silica tetrahedra and they crystallize in the monoclinic and orthorhombic systems...
, 5% olivineOlivineThe mineral olivine is a magnesium iron silicate with the formula 2SiO4. It is a common mineral in the Earth's subsurface but weathers quickly on the surface....
and 5% groundmass (in essence a gabbroGabbroGabbro refers to a large group of dark, coarse-grained, intrusive mafic igneous rocks chemically equivalent to basalt. The rocks are plutonic, formed when molten magma is trapped beneath the Earth's surface and cools into a crystalline mass....
) would be termed a plagioclase-pyroxene Adcumulate with accessory olivine. - a rock consisting of 80% olivine, 5% magnetiteMagnetiteMagnetite is a ferrimagnetic mineral with chemical formula Fe3O4, one of several iron oxides and a member of the spinel group. The chemical IUPAC name is iron oxide and the common chemical name is ferrous-ferric oxide. The formula for magnetite may also be written as FeO·Fe2O3, which is one part...
and 15% groundmass is an olivine mesocumulate, (in essence a peridotitePeridotiteA peridotite is a dense, coarse-grained igneous rock, consisting mostly of the minerals olivine and pyroxene. Peridotite is ultramafic, as the rock contains less than 45% silica. It is high in magnesium, reflecting the high proportions of magnesium-rich olivine, with appreciable iron...
).
Cumulate terminology is appropriate for use when describing cumulate rocks. In intrusions which have a uniform composition and minimal textural and mineralogical layering or visible crystal accumulations it is inappropriate to describe them according to this convention.
Geochemistry
Cumulate rocks, because they are fractionatesFractional crystallization (geology)
Fractional crystallization is one of the most important geochemical and physical processes operating within the Earth's crust and mantle. Fractional crystallization is the removal and segregation from a melt of mineral precipitates; except in special cases, removal of the crystals changes the...
of a parental magma, should not be used to infer the composition of a magma from which they are formed. The chemistry of the cumulate itself can inform on the residual melt composition, but several factors need to be considered.
Cumulate chemistry
The chemistry of a cumulate can inform upon the temperature, pressure and chemistry of the melt from which it was formed, but the number of minerals which co-precipitate need to be known, as does the chemistry or mineral species of the precipitated minerals. This is best illustrated by an example;As an example, a magma of basalt
Basalt
Basalt is a common extrusive volcanic rock. It is usually grey to black and fine-grained due to rapid cooling of lava at the surface of a planet. It may be porphyritic containing larger crystals in a fine matrix, or vesicular, or frothy scoria. Unweathered basalt is black or grey...
composition that is precipitating cumulates of anorthite
Anorthite
Anorthite is the calcium endmember of plagioclase feldspar. Plagioclase is an abundant mineral in the Earth's crust. The formula of pure anorthite is CaAl2Si2O8.-Mineralogy :...
plagioclase plus enstatite
Enstatite
Enstatite is the magnesium endmember of the pyroxene silicate mineral series enstatite - ferrosilite . The magnesium rich members of the solid solution series are common rock-forming minerals found in igneous and metamorphic rocks...
pyroxene is changing composition by the removal of the elements which make up the precipitated minerals. In this example, the precipitation of anorthite (a calcium
Calcium
Calcium is the chemical element with the symbol Ca and atomic number 20. It has an atomic mass of 40.078 amu. Calcium is a soft gray alkaline earth metal, and is the fifth-most-abundant element by mass in the Earth's crust...
aluminium feldspar
Feldspar
Feldspars are a group of rock-forming tectosilicate minerals which make up as much as 60% of the Earth's crust....
) removes calcium from the melt, which becomes more depleted in calcium. Enstatite being precipitated from the melt will remove magnesium, so the melt becomes depleted in these elements. This tends to enrich the concentration of other elements - typically sodium, potassium, titanium and iron.
The rock that is made of the accumulated minerals will not have the same composition as the magma. In the above example, the cumulate of anorthite + enstatite is rich in calcium and magnesium, and the melt is depleted in calcium and magnesium. The cumulate rock is a plagioclase-pyroxene cumulate (a gabbro) and the melt is now more felsic and aluminous in composition (trending towards andesite
Andesite
Andesite is an extrusive igneous, volcanic rock, of intermediate composition, with aphanitic to porphyritic texture. In a general sense, it is the intermediate type between basalt and dacite. The mineral assemblage is typically dominated by plagioclase plus pyroxene and/or hornblende. Magnetite,...
compositions).
In the above example, the plagioclase and pyroxene need not be pure end-member compositions (anorthite-enstatite), and thus the effect of depletion of elements can be complex. The minerals can be precipitated in any ratio within the cumulate; such cumulates can be 90% plagioclase:10% enstatite, through to 10% plagiclase:90% enstatite and remain a gabbro. This also alters the chemistry of the cumulate, and the depletions of the residual melt.
It can be seen that the effect on the composition of the residual melt left behind by the formation of the cumulate is dependent on the composition of the minerals which precipitate, the number of minerals which co-precipitate at the same time, and the ratio of the minerals which co-precipitate. In nature, cumulates usually form from 2 mineral species, although ranges from 1 to 4 mineral species are known. Cumulate rocks which are formed from one mineral alone are often named after the mineral, for example a 99% magnetite cumulate is known as a magnetitite.
A specific example is the Skaergaard intrusion
Skaergaard intrusion
The Skaergaard intrusion is a layered igneous intrusion in East Greenland. It comprises various rock types including gabbro, ferro diorite, anorthosite and granophyre.Discovered by Lawrence Wager...
in Greenland
Greenland
Greenland is an autonomous country within the Kingdom of Denmark, located between the Arctic and Atlantic Oceans, east of the Canadian Arctic Archipelago. Though physiographically a part of the continent of North America, Greenland has been politically and culturally associated with Europe for...
. At Skaergaard a 2500 m thick layered intrusion shows distinct chemical and mineralogic layering:
- plagioclase varies from An66 near the base to An30 near the top (Anxx = anorthite percentage)
- CaO 10.5 % base to 5.1% top; Na2O + K2O 2.3% base to 5.9% top
- olivine varies from Fo57 near the base to Fo0 at the top (Foxx = forsteriteForsteriteForsterite is the magnesium rich end-member of the olivine solid solution series. Forsterite crystallizes in the orthorhombic system with cell parameters a 4.75 Å , b 10.20 Å and c 5.98 Å .Forsterite is associated with igneous and metamorphic rocks and has also been found in meteorites...
percentage of the olivine)- MgO 11.6% Lower zone to 1.7% upper zone; FeO 9.3% lower zone to 22.7% upper zone
The Skaergaard is interpreted to have crystallised from a single confined magma chamber.
Residual melt chemistry
One way to infer the composition of the magma that created the cumulate rocks is to measure groundmass chemistry, but that chemistry is problematic or impossible to sample. Otherwise, complex calculations of averaging cumulate layers must be utilised, which is a complex process. Alternatively, the magma composition can be estimated by assuming certain conditions of magma chemistry and testing them on phase diagrams using measured mineral chemistry. These methods work fairly well for cumulates formed in volcanicVolcano
2. Bedrock3. Conduit 4. Base5. Sill6. Dike7. Layers of ash emitted by the volcano8. Flank| 9. Layers of lava emitted by the volcano10. Throat11. Parasitic cone12. Lava flow13. Vent14. Crater15...
conditions (ie; komatiite
Komatiite
Komatiite is a type of ultramafic mantle-derived volcanic rock. Komatiites have low silicon, potassium and aluminium, and high to extremely high magnesium content...
s). Investigating magma conditions of large layered ultramafic intrusions is more fraught with problems.
These methods have their drawbacks, primarily that they must all make certain assumptions which rarely hold true in nature. The foremost problem is the fact that in large ultramafic intrusions, assimilation of wall rocks tends to alter the chemistry of the melt as time progresses, so measuring groundmass compositions may fall short. Mass balance calculations will show deviations from expected ranges, which may infer assimilation has occurred, but then further chemistry must be embarked upon to quantify these findings.
Secondly, large ultramafic intrusions are rarely sealed systems and may be subject to regular injections of fresh, primitive magma, or to loss of volume due to further upward migration of the magma (possibly to feed volcanic vents or dyke
Dike (geology)
A dike or dyke in geology is a type of sheet intrusion referring to any geologic body that cuts discordantly across* planar wall rock structures, such as bedding or foliation...
swarms). In such cases, calculating magma chemistries may resolve nothing more than the presence of these two processes having affected the intrusion.
Economic importance
The economic importance of cumulate rocks is best represented by three classes of mineral deposits found in ultramafic to mafic layered intrusions.- Silicate mineral cumulates
- Oxide mineral cumulates
- Sulfide melt cumulates
Silicate mineral cumulates
Silicate minerals are rarely sufficiently valuable to warrant extraction as ore. However, some anorthositeAnorthosite
Anorthosite is a phaneritic, intrusive igneous rock characterized by a predominance of plagioclase feldspar , and a minimal mafic component...
intrusions contain such pure anorthite
Anorthite
Anorthite is the calcium endmember of plagioclase feldspar. Plagioclase is an abundant mineral in the Earth's crust. The formula of pure anorthite is CaAl2Si2O8.-Mineralogy :...
concentrations that they are mined for feldspar
Feldspar
Feldspars are a group of rock-forming tectosilicate minerals which make up as much as 60% of the Earth's crust....
, for use in refractories
Refractory
A refractory material is one that retains its strength at high temperatures. ASTM C71 defines refractories as "non-metallic materials having those chemical and physical properties that make them applicable for structures, or as components of systems, that are exposed to environments above...
, glassmaking and other sundry uses (toothpaste
Toothpaste
Toothpaste is a paste or gel dentifrice used with a toothbrush as an accessory to clean and maintain the aesthetics and health of teeth. Toothpaste is used to promote oral hygiene: it serves as an abrasive that aids in removing the dental plaque and food from the teeth, assists in suppressing...
, cosmetics
Cosmetics
Cosmetics are substances used to enhance the appearance or odor of the human body. Cosmetics include skin-care creams, lotions, powders, perfumes, lipsticks, fingernail and toe nail polish, eye and facial makeup, towelettes, permanent waves, colored contact lenses, hair colors, hair sprays and...
, etcetera).
Oxide mineral cumulates
Oxide mineral cumulates form in layered intrusions when fractional crystallisation has progressed enough to allow the crystallisation of oxide minerals which are invariably a form of spinelSpinel
Spinel is the magnesium aluminium member of the larger spinel group of minerals. It has the formula MgAl2O4. Balas ruby is an old name for a rose-tinted variety.-Spinel group:...
. This can happen due to fractional enrichment of the melt in iron
Iron
Iron is a chemical element with the symbol Fe and atomic number 26. It is a metal in the first transition series. It is the most common element forming the planet Earth as a whole, forming much of Earth's outer and inner core. It is the fourth most common element in the Earth's crust...
, titanium
Titanium
Titanium is a chemical element with the symbol Ti and atomic number 22. It has a low density and is a strong, lustrous, corrosion-resistant transition metal with a silver color....
or chromium
Chromium
Chromium is a chemical element which has the symbol Cr and atomic number 24. It is the first element in Group 6. It is a steely-gray, lustrous, hard metal that takes a high polish and has a high melting point. It is also odorless, tasteless, and malleable...
.
These conditions are created by the high-temperature fractionation of highly magnesian olivine and/or pyroxene, which causes a relative iron-enrichment in the residual melt. When the iron content of the melt is sufficiently high enough, magnetite
Magnetite
Magnetite is a ferrimagnetic mineral with chemical formula Fe3O4, one of several iron oxides and a member of the spinel group. The chemical IUPAC name is iron oxide and the common chemical name is ferrous-ferric oxide. The formula for magnetite may also be written as FeO·Fe2O3, which is one part...
or ilmenite
Ilmenite
Ilmenite is a weakly magnetic titanium-iron oxide mineral which is iron-black or steel-gray. It is a crystalline iron titanium oxide . It crystallizes in the trigonal system, and it has the same crystal structure as corundum and hematite....
crystallise and, due to their high density, form cumulate rocks. Chromite
Chromite
Chromite is an iron chromium oxide: FeCr2O4. It is an oxide mineral belonging to the spinel group. Magnesium can substitute for iron in variable amounts as it forms a solid solution with magnesiochromite ; substitution of aluminium occurs leading to hercynite .-Occurrence:Chromite is found in...
is generally formed during pyroxene fractionation at low pressures, where chromium is rejected from the pyroxene crystals.
These oxide layers form laterally continuous deposits of rocks containing in excess of 50% oxide minerals. When oxide minerals exceed 90% of the bulk of the interval the rock may be classified according to the oxide mineral, for example magnetitite, ilmenitite or chromitite. Strictly speaking, these would be magnetite orthocumulate, ilmenite orthocumulate and chromite orthocumulates.
Sulfide mineral segregations
Sulfide mineral cumulates in layered intrusions are an important source of nickelNickel
Nickel is a chemical element with the chemical symbol Ni and atomic number 28. It is a silvery-white lustrous metal with a slight golden tinge. Nickel belongs to the transition metals and is hard and ductile...
, copper
Copper
Copper is a chemical element with the symbol Cu and atomic number 29. It is a ductile metal with very high thermal and electrical conductivity. Pure copper is soft and malleable; an exposed surface has a reddish-orange tarnish...
, platinum group elements and cobalt
Cobalt
Cobalt is a chemical element with symbol Co and atomic number 27. It is found naturally only in chemically combined form. The free element, produced by reductive smelting, is a hard, lustrous, silver-gray metal....
. Deposits of a mixed massive or mixed sulfide-silicate 'matrix' of pentlandite
Pentlandite
Pentlandite is an iron-nickel sulfide, 9S8. Pentlandite usually has a Ni:Fe ratio of close to 1:1. It also contains minor cobalt.Pentlandite forms isometric crystals, but is normally found in massive granular aggregates. It is brittle with a hardness of 3.5 - 4 and specific gravity of 4.6 - 5.0 and...
, chalcopyrite
Chalcopyrite
Chalcopyrite is a copper iron sulfide mineral that crystallizes in the tetragonal system. It has the chemical composition CuFeS2. It has a brassy to golden yellow color and a hardness of 3.5 to 4 on the Mohs scale. Its streak is diagnostic as green tinged black.On exposure to air, chalcopyrite...
, pyrrhotite
Pyrrhotite
Pyrrhotite is an unusual iron sulfide mineral with a variable iron content: FeS . The FeS endmember is known as troilite. Pyrrhotite is also called magnetic pyrite because the color is similar to pyrite and it is weakly magnetic...
and/or pyrite
Pyrite
The mineral pyrite, or iron pyrite, is an iron sulfide with the formula FeS2. This mineral's metallic luster and pale-to-normal, brass-yellow hue have earned it the nickname fool's gold because of its resemblance to gold...
are formed, occasionally with cobaltite
Cobaltite
Cobaltite is a sulfosalt mineral composed of cobalt, arsenic and sulfur, CoAsS. It contains up to 10 percent iron and variable amounts of nickel. Structurally it resembles pyrite with one of the sulfur atoms replaced by an arsenic atom....
and platinum-tellurium sulfides. These deposits are formed by melt immiscibility between sulfide and silicate melts in a sulfur-saturated magma.
They are not strictly a cumulate rock, as the sulfide is not precipitated as a solid mineral, but rather as immiscible sulfide liquid. However, they are formed by the same processes and accumulate due to their high specific gravity
Specific gravity
Specific gravity is the ratio of the density of a substance to the density of a reference substance. Apparent specific gravity is the ratio of the weight of a volume of the substance to the weight of an equal volume of the reference substance. The reference substance is nearly always water for...
, and can form laterally extensive sulfide 'reefs'. The sulfide minerals generally form an interstitial
Interstitial
An interstitial space or interstice is an empty space or gap between spaces full of structure or matter.In particular, interstitial may refer to:-Physical sciences:...
matrix to a silicate cumulate.
Sulfide mineral segregations can only be formed when a magma attains sulfur saturation. In mafic and ultramafic rocks they form economic Ni, Cu and PGE
Platinum group
The platinum group metals is a term used sometimes to collectively refer to six metallic elements clustered together in the periodic table.These elements are all transition metals, lying in the d-block .The six...
deposits because these elements are chalcophile and are strongly partitioned into the sulfide melt. In rare cases, felsic
Felsic
The word "felsic" is a term used in geology to refer to silicate minerals, magma, and rocks which are enriched in the lighter elements such as silicon, oxygen, aluminium, sodium, and potassium....
rocks become sulfur saturated and form sulfide segregations. In this case, the typical result is a disseminated form of sulfide mineral, usually a mixture of pyrrhotite
Pyrrhotite
Pyrrhotite is an unusual iron sulfide mineral with a variable iron content: FeS . The FeS endmember is known as troilite. Pyrrhotite is also called magnetic pyrite because the color is similar to pyrite and it is weakly magnetic...
, pyrite
Pyrite
The mineral pyrite, or iron pyrite, is an iron sulfide with the formula FeS2. This mineral's metallic luster and pale-to-normal, brass-yellow hue have earned it the nickname fool's gold because of its resemblance to gold...
and chalcopyrite
Chalcopyrite
Chalcopyrite is a copper iron sulfide mineral that crystallizes in the tetragonal system. It has the chemical composition CuFeS2. It has a brassy to golden yellow color and a hardness of 3.5 to 4 on the Mohs scale. Its streak is diagnostic as green tinged black.On exposure to air, chalcopyrite...
, forming Cu mineralisation. It is very rare but not unknown to see cumulate sulfide rocks in granitic intrusions.
See also
- Igneous differentiationIgneous differentiationIn geology, igneous differentiation is an umbrella term for the various processes by which magmas undergo bulk chemical change during the partial melting process, cooling, emplacement or eruption.-Primary melts:...
- Igneous rocks
- Layered intrusion
- Ultramafic rocks
- List of rock textures
- KomatiiteKomatiiteKomatiite is a type of ultramafic mantle-derived volcanic rock. Komatiites have low silicon, potassium and aluminium, and high to extremely high magnesium content...